Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Система уравнений Максвелла




 

Первое уравнение Максвелла в интегральной формеявляется обобщением закона электромагнитной индукции Фарадея в форме

 

.

 

Согласно Максвеллу этот закон справедлив не только для проводящего контура, но и для любого замкнутого контура, мысленно выбранного в переменном магнитном поле. Иными словами, с переменным магнитным полем независимо от того, находятся в нём проводники или нет, неразрывно связано вихревое электрическое поле.

Переменное электрическое поле, так же как и электрический ток, является источником магнитного поля. Количественной мерой магнитного действия переменного электрического поля служит ток смещения. Плотностью тока смещенияназывается вектор:

.

Второе уравнение Максвелла в интегральнойформе: циркуляция вектора напряжённости магнитного поля по произвольному контуру L равна алгебраической сумме макротоков и тока смещения сквозь поверхность, натянутую на этот контур (рис. 2.21) и находится по формуле

 

,

где - плотность тока проводимости; IСМ. - ток смещения.

Третье уравнение Максвелла в интегральной форме

,

где r - объемная плотность свободных электрических зарядов.

Четвёртое уравнение Максвелла в интегральной форме

.

Систему уравнений Максвелла необходимо дополнить так называемыми материальными уравнениями, характеризующими электрические и магнитные свойства среды.

В случае изотропных несегнетоэлектрических и неферромагнитных сред и макротоков, подчиняющихся закону Ома, эти уравнения имеют вид

 

, , ,

где e0, m0 - электрическая и магнитная постоянные; e, m - относительные диэлектрическая и магнитная проницаемости среды; s - удельная электрическая проводимость среды.

Примеры решения задач

 

1. Квадратная рамка со стороной а =2 см, содержащая 100 витков, подвешена на упругой нити с постоянной кручения С =10 мкН×м/град. Плоскость рамки совпадает с направлением линий индукции внешнего магнитного поля. Определить индукцию магнитного поля, если при пропускании по рамке тока I =1А она повернулась на угол j =60о.

 

Решение

Рамка будет находиться в равновесии, когда результирующий момент сил, действующий на рамку, равен нулю, т.е. , где М1 - момент сил, действующих на рамку с током со стороны магнитного поля; М2 - момент упругих сил.

 

М1 = рm B sin a,

где р m = NIS = NIa2 - магнитный момент рамки; В - индукция магнитного поля; a - угол между вектором и нормалью к плоскости рамки. Как видно из рисунка, угол a =90°– j =30°.

М2=Сj.

Из условия равновесия

Ia2NB sin a - Сj = 0,

откуда

 

B = Сj/(Ia2NB sin a).

Подставим числовые значения:

В = 10 -3×60 / 1×4×100×0,5 = 30 мТл.

 

2. Прямой бесконечный проводник имеет круговую петлю радиусом R =80 см. Определить силу тока в проводнике, если известно, что в точке А магнитная индукция B = 12,5 мкТл.

 

Решение

По принципу суперпозиции индукция магнитного поля в точке А равна векторной сумме индукций магнитных полей, созданных бесконечно длинным проводником с током I (В1) и круговым током в его центре (В2):

.

Векторы В1 и В2 на рисунке в точке А будут направлены в одну сторону перпендикулярно плоскости рисунка от нас, тогда можно записать

,

откуда

.

 

Подставим числовые значения:

А.

3. Квадратная рамка расположена в одной плоскости с длинным прямым проводником с током I0 =5 А. Сторона рамки 8 см. Проходящая через середины противоположных сторон ось рамки параллельна проводу и отстоит от него на расстоянии, которое в n = 1,5 раза больше стороны рамки. Найти поток вектора через поверхность рамки.

Решение

Прямой проводник с током создает вокруг себя неоднородное магнитное поле с индукцией

,

которая уменьшается с увеличением расстояния от проводника. Направление вектора индукции будет совпадать с направлением нормали к рамке. Так как магнитное поле неоднородное, поверхность, ограниченную рамкой, разобьём на элементарные площадки dS = a×dr, в пределах которых магнитную индукцию можно считать постоянной величиной (см. рисунок). Тогда поток магнитной индукции (магнитный поток) через элементарную площадку

 

m = B·dS·cos 0° = B×а×dr = m 0I0 ·a·dr/(2pr).

 

Полный поток вектора через поверхность рамки

 

.

Подставим числовые значения:

Фm = 4p×10–7×5×0,08×(ln 2)/2p = 5,545×10–8 Вб.

4. Между полюсами электромагнита требуется создать магнитное поле с индукцией В =1,4 Тл. Длина железного сердечника l 1=40 см, длина межполюсного пространства l 2=1 см, диаметр сердечника D =5 см. Какую ЭДС нужно взять для питания обмотки электромагнита, чтобы получить требуемое магнитное поле, используя медную проволоку площадью поперечного сечения S =1 мм 2? Какая будет при этом наименьшая толщина b намотки, если считать, что предельно допустимая плотность тока j =3 МА/м 2?

 

 

Решение

Так как силовые линии магнитного поля замкнуты, то магнитный поток и индукция магнитного поля в сердечнике и в воздушном зазоре одинаковы: В12. Для решения задачи воспользуемся теоремой о циркуляции вектора (т.к. циркуляция определяется только макротоками и не зависит от наличия или отсутствия магнетика). Выберем замкнутый контур вдоль силовой линии и вычислим циркуляцию вектора напряжённости:

,

где Н1 и Н2 - напряжённости магнитного поля в сердечнике и вне его; l 1 и l 2 – длина железного сердечника и межполюсного пространства.

Так как H2 = B2/m0 = B1/m0, то

H1l1 + B1l2/m0 = NI. (1)

 

Поскольку величина В1 известна по условию задачи, то величину Н1 найдём из графика зависимости В = В(H) (прил. 1):

при В = 1,3 Тл, Н = 800 А/м.

Из уравнения (1) определим число ампер-витков электромагнита:

 

(NI) = 800×0,4 + 1,3×0,01/(4×3,14×10–7) = 1,07×104 А-вит.

Величину ЭДС e вычислим по закону Ома:

e = IRпров = Irl пров/S = IrpDN / S = IrpDN / S.

Подставим числовые значения:

e = 1,7×10–8×3,14×0,05×1,07×104/10–6 = 29 В.

Для определения толщины обмотки нужно знать общее число витков N и число витков N1 в одном слое обмотки.

N1 = l1/d,

где l 1 – длина сердечника; d – диаметр провода обмотки: d = , тогда

N1 = l 1/ = 0.4 / = 354 витка.

Зная число ампер–витков и предельно допустимое значение силы тока (I=jS), определим общее число витков N

 

N = (NI)/(jS) = 1,07×10 4 / (3×106×10–6) = 3567 витков.

Число слоёв

k = N/N1 = 3567/354» 10.

Тогда толщина обмотки

b = d×k = k× = 10× = 11,3×10 -3 м» 11 мм.

5. Квадратная рамка с током I =1 А расположена в одной плоскости с длинным прямым проводником с током I0 =5 А. Сторона рамки 10 см. Ось рамки, проходящая через середины противоположных сторон, параллельна проводу и отстоит от него на расстоянии, которое в n = 1,5 раза больше стороны рамки. Найти:

1) силу, действующую на рамку;

2) работу, которую нужно совершить для поворота рамки вокруг её оси на 180°, если токи поддерживают неизменными.

 

Решение

1. Прямой длинный проводник с током I0 создаёт вокруг себя неоднородное магнитное поле с индукцией B0=m0Io/2pr, которая уменьшается с увеличением расстояния от проводника. В таком магнитном поле на каждую сторону квадратной рамки с током будет действовать сила Ампера, направление которой можно определить по правилу левой руки, а величину - по формуле FA=IB0lsin a.

Как видно из рисунка (при указанных направлениях силы тока в проводниках), l = a, a =90° (sin a =1), силы и противоположны по направлению и равны по величине

.

Следовательно, результирующая этих двух сил равна нулю. Силы и противоположны по направлению, но не равны по величине:

F1 = Im0I0a /2pa = m0I0I /2p.

F3 = Im0Ia /2p2a = m0I0I /4p.

Так как сила F1 в два раза больше силы F3, то результирующая этих сил будет совпадать по направлению с силой F1, а по величине

F = F1 – F3 = m0I0I /2p – m0I0I /4p = m0I0I /4p.

Подставим числовые значения

F = 4p×10–7×1×5/4p = 5×10–7 Н = 0,5 мкН.

2. Работу, необходимую для поворота рамки с током I на 180°, можно определить по формуле

А = IDФm = I(Ф2m – Ф1m),

где Ф1m и Ф2m - магнитные потоки через поверхность рамки в начальном и конечном состояниях. Так как магнитное поле проводника с током I0 неоднородное, сначала определим магнитный поток через элементарную площадку dS=adr, в пределах которой индукцию магнитного поля можно считать постоянной величиной:

m = B0dS cos a,

а полный магнитный поток сквозь рамку в начальном и конечном состояниях

.

.

Так как a1 = 0°, a2 = 180°, (cosa1 = 1, cosa2 = –1), то

m = Ф2m – Ф1m = – m0aI0 (ln 2)/2p – m0aI0 (ln 2)/2p = –m0aI0 (ln 2)/p.

Работа

А = IDФm = –m0aI0I (ln 2)/p.

Подставим числовые значения:

А = –4p×0,1×1×5×0,69×10–7/p» –1,4×10–7 Дж = –0,14 мкДж.

6. Тонкий металлический стержень длиной l = 1,2 м вращается в однородном магнитном поле вокруг перпендикулярной к стержню оси, отстоящей от одного из его концов на расстоянии а =0,25 м, делая n =120 об/мин. Вектор магнитной индукции поля параллелен оси вращения и имеет величину В =10–3 Тл. Найти разность потенциалов U, возникающую между концами стержня.

Решение

Разность потенциалов между концами стержня будет равна по величине ЭДС индукции, возникающей в стержне за счёт вращения

. (1)

 

Для однородного магнитного поля и плоской поверхности m=BdScosa, или, подставив в (1), получаем (знак минус опустим, так как необходимо найти только величину ЭДС)

. (2)

По условию задачи cosa =1, поэтому из выражения (2) следует

, (3)

dj = wdt = (2pn)dt. (4)

Подставляя (4) в (3), получим:

.

U = 10–3×2p×2 (1,22 + 2×1,2×0,25)/2 = 0,0128 В = 12,8 мВ.

 

7. Прямой проводник длиной l =10 см помещён в однородное магнитное поле с индукцией В =1 Тл. Концы проводника замкнуты гибким проводом, находящимся вне поля. Сопротивление внешней цепи R =0,4 Ом. Какая мощность потребуется для того, чтобы двигать проводник перпендикулярно линиям индукции с постоянной скоростью u=20 м/с?

Решение

Проведём анализ условия задачи. При движении проводник будет пересекать линии индукции. За счёт этого в проводнике возникнет ЭДС индукции

e = – dФ/dt, (1)

где в данном случае

dФ = BdS = Bludt. (2)

Подставляя (2) в (1), получаем:

e = – Blu.

Сила индукционного тока в цепи согласно закону Ома

I = e / R = – (Blv)/R.

Тепловая мощность, выделяемая на внешнем сопротивлении

P = I2R = B2l2u2/R.

Эта мощность будет равна мощности, которую необходимо подводить к системе за счёт внешней силы, действующей на проводник, для того, чтобы скорость движения проводника была постоянной. Таким образом:

P = B2l2u2/R = 1×0,01×400/0,4 = 10 Вт.

8. Две катушки равномерно намотаны на цилиндрический сердечник, длина которого много больше диаметра. Индуктивность первой катушки 0,2 Гн, второй- 0,8 Гн. Сопротивление второй катушки 600 Ом. Какой ток потечёт по второй катушке, если ток в 0,3 А, текущий в первой катушке, выключить в течение времени 0,001 с.

Решение

Данная задача относится к разделу взаимной индукции. Сила тока во вторичной обмотке

I2 = e2/R2. (1)

Величина e2 зависит от взаимной индуктивности L12 и быстроты изменения силы тока I1

e 2 = –L12dI1/dt = –L12DI1/Dt = –L12(I1 – I01)/Dt. (2)

Взаимная индуктивность двух соленоидов, имеющих общий сердечник, рассчитывается по формуле

L12 = mm0n1n2lS. (3)

Собственные индуктивности

L1 = mm0n12lS, (4)

L2 = mm0n22lS, (5)

поэтому, учитывая выражения (3), (4), (5), получаем

L12 = . (6)

Подставляя выражение (6) в выражение (2), а полученный результат - в выражение (1), получаем:

I2 = (L12I 01)/R2 = (I01 )/R2Dt.

I2 = = 0,2 А.

9. На тороид квадратного поперечного сечения намотано 1000 витков провода. Внутренний радиус тороида равен 0,1 см, внешний - 0,2 см. Магнитная проницаемость тороида равна100. По обмотке тороида протекает электрический ток силой 1 À. Определить энергию магнитного поля внутри тороида.

Решение

Решим задачу двумя способами.

1. Энергия магнитного поля – это энергия, запасённая в индуктивности:

,

где L - индуктивность, I - сила тока, протекающего в индуктивности.

Потокосцепление, согласно определению индуктивности, рассчитывается как

Y = LI, Y = NФm,

где Фm - магнитный поток через поперечное сечение S тороида.

,

где r - расстояние от центра тороида до площадки dS, на которой определяется величина индукции магнитного поля. Так как тороид квадратного сечения, то высота площадки h = (r 2 - r 1), а ширина - dr. Поэтому

.

Тогда индуктивность тороида

L = = mm0N 2 (r2 - r1) ln .

Подставляя выражение для индуктивности в выражение для энергии, получаем

.

Wm = 100×4p×10–7×106×10–3×1×ln2 /(4p) = 6,9 мДж.

2. Энергия магнитного поля Wm связана с плотностью энергии wm соотношением:

Wm = ,

где w m = mm0Н 2/2.

Внутри тороида

Н = NI/l = NI/2pr.

Выберем в качестве элемента объема dV объем цилиндрического слоя радиусом r, высотой h=(r2 - r1) и толщиной dr (в пределах этого слоя величина Н постоянна). Запишем выражение для dV=(r2 – r1)2pr·dr и подставим в выражение для энергии Wm. Получаем

W m = mm 0N 2 I 2(r 2 - r 1)ln .

Подставим числовые значения и получим:

W = 6,9 МДж.

Как видим, оба решения дают одно и то же значение.

Примечание: если в условии задачи величина m не задана, а указано, что тороид представляет собой железный, стальной или чугунный сердечник, то величина m находится по графику зависимости В = В(Н) (прил. 1) как

m = В/m 0Н.

В качестве величины Н принять значение Н в центральной точке поперечного сечения тороида.

Задачи для самоконтроля

 

Длинный провод с током I =50 А изогнут под углом a =2p/3. Определить магнитную индукцию в точке А. Расстояние d =5 см.

Ответ: В =34,6 мкТл.

2. Тороид с железным сердечником, длина которого по средней линии l =1 м, имеет воздушный зазор шириной l 2. По обмотке тороида, содержащей N =1300 витков, пустили ток

I =2 A, в результате чего индукция в зазоре В2 стала равна 1 Тл. Определить ширину зазора l 2.

Ответ: l 2 = 3 мм.

 

3. a -частица, кинетическая энергия которой Ек =500 эВ, влетает в однородное магнитное поле, перпендикулярно к направлению её движения. Индукция магнитного поля В =0,1 Тл. Определить силу F, действующую на a -частицу, радиус R окружности, по которой движется a -частица, и период обращения Т a -частицы.

Ответ: F =5×10–15 Н, R =3,2 см, Т =1,3 мкс.

4. Квадратная рамка со стороной а =10 см, по которой течет ток I =200 А, свободно установилась в однородном магнитном поле (В =0,2 Тл). Определить работу, которую необходимо совершить при повороте рамки вокруг оси, лежащей в плоскости рамки и перпендикулярной линиям магнитной индукции, на угол j =2p/3 радиан.

Ответ: А=I·В·а2·(1-cosj)= 0,6 Дж.

5. Бесконечно тонкий проводник равномерно вращается с частотой n =10 об/с в однородном магнитном поле с индукцией В =0,01 Тл. Ось вращения, проходящая через один из концов проводника, параллельна линиям индукции и составляет угол a =30о с осью проводника. Найти разность потенциалов между концами проводника, если его длина l = 0,1 м.

Ответ: В.

6. Из провода радиусом а =1,00 мм сделана прямоугольная рамка, длина которой l =10,0 м значительно больше ширины b =0,10 м (измеренной между осями сторон рамки). Найти индуктивность рамки L. Магнитная проницаемость среды равна 1. Полем внутри проводов пренебречь.

Ответ: мкГн.

7. Две катушки расположены на небольшом расстоянии друг от друга. Когда сила тока в первой катушке изменяется с быстротой DI/Dt =5 А/с, во второй катушке возникает ЭДС индукции ei =0,1 В. Определить взаимную индуктивность катушек.

Ответ: Lвз = = 20 мГн.

8. Напряженность магнитного поля тороида со стальным сердечником возросла от Н1 =200 А/м до Н2 =800 А/м. Определить, во сколько раз изменилась объемная плотность энергии магнитного поля.

Ответ: .

Контрольное задание № 4

401. По двум длинным параллельным проводам текут в противоположных направлениях токи силой I1=I2=I =10 А. Расстояние между проводами d =0,3 м. Определить магнитную индукцию в точке А, удаленной от первого и второго проводов соответственно на расстояния r1 =0,15 м и r2 =0,2 м.

402. Определить магнитную индукцию В поля, создаваемого отрезком бесконечно длинного провода, в точке, равноудалённой от концов отрезка и находящейся на расстоянии а =4 см от его середины. Длина отрезка провода l= 20 см, сила тока в проводе I =10 А.

403. Определить индукцию магнитного поля в центре проволочной квадратной рамки со стороной а =15 см, если по рамке течёт ток I =5 А.

404. Определить индукцию магнитного поля в центре контура, имеющего вид прямоугольника, если его диагональ d =16 см, угол между диагоналями j =30°, ток в контуре I =5 А.

405. Ток I =20 А течёт по длинному проводнику, согнутому под прямым углом. Определить индукцию магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на 10 см.

 
 


406. На рисунке изображены сечения двух прямолинейных бесконечно длинных проводников с токами. Расстояние между проводниками АВ=10 см, токи I1=20 А и I2 =30 А. Определить индукцию В магнитного поля, вызванного токами I1 и I2 в точках М1, М2, М3. Расстояния М1А =2 см, АМ2 =4 см, ВМ3 =3 см.

407. Два прямолинейных бесконечно длинных проводника с токами расположены перпендикулярно друг к другу и находятся в одной плоскости. Определить индукцию магнитного поля в точках М1 и М2, если токи I1 =2 А, I2 =3 А. Расстояния АМ1 =АМ2 =1 см, ВМ1 =СМ2 =2 см.

408. Бесконечно длинный тонкий проводник с током I =50 А имеет изгиб радиусом R =10 см. Определить индукцию магнитного поля в точке О (в центре изгиба).

409. По проводу, согнутому в виде правильного шестиугольника со стороной а =20 см, течёт ток I =100 А. Определить индукцию магнитного поля в центре шестиугольника. Для сравнения определить магнитную индукцию магнитного поля в центре кругового провода, совпадающего с окружностью, описанной около данного шестиугольника.

410. Тороид с железным сердечником, длина которого по средней линии l =1 м, имеет воздушный зазор l 2=3 мм. По обмотке тороида, содержащей N =1300 витков, пустили ток, в результате чего индукция в зазоре В2 стала равна 1 Тл. Определить силу тока.

411. По проводнику, изогнутому в виде окружности, течёт ток. Индукция магнитного поля в центре окружности равна 25,1 мкТл. Не изменяя силы тока в проводнике, ему придали форму квадрата. Определить индукцию магнитного поля в точке пересечения диагоналей этого квадрата.

412. Внутри соленоида длиной l =25,1 см и диаметром D =2 см помещён железный сердечник. Соленоид имеет N =200 витков. Определить магнитный поток Фm, если ток в соленоиде I =5 А.

413. Магнитная индукция В на оси тороида без сердечника (внешний диаметр тороида d1 = 60 см, внутренний - d2 =40 см), содержащего N =200 витков, составляет 0,16 мТл. Пользуясь теоремой о циркуляции вектора , определить силу тока в обмотке тороида.

414. По прямому бесконечно длинному проводнику течёт ток I =10 А. Определить, пользуясь теоремой о циркуляции вектора , магнитную индукцию В в точке, расположенной на расстоянии r =10 см от проводника.

415. Тороид намотан на железное кольцо сечением S =5 см2. При силе тока I =1 А магнитный поток Фm =250 мкВб. Определить число витков n тороида, приходящихся на отрезок длиной 1 см средней линии кольца.

416. Электромагнит изготовлен в виде тороида. Сердечник тороида со средним диаметром d =51 см имеет вакуумный зазор длиной l0 =2 мм. Обмотка тороида равномерно распределена по всей его длине. Во сколько раз уменьшится индукция магнитного поля в зазоре, если, не изменяя силы тока в обмотке, зазор увеличится в n =3 раза? Рассеянием магнитного поля вблизи зазора пренебречь. Магнитную проницаемость m сердечника считать постоянной и принять равной 800.

417. Обмотка катушки сделана из проволоки диаметром d =0,8 мм. Витки плотно прилегают друг к другу. Считая катушку достаточно длинной, определить напряжённость H и индукцию B магнитного поля внутри катушки при токе I =1A.

418. Железное кольцо диаметром D =11,4 см имеет обмотку из N =200 витков, по которой течет ток I1 =15A. Какой ток I2 должен проходить через обмотку, чтобы индукция в сердечнике осталась прежней, если в кольце сделать зазор шириной b =1 мм? Определить магнитную проницаемость m материала сердечника при этих условиях.

419. Обмотка соленоида состоит из N витков медной проволоки, поперечное сечение которой S =1 мм2. Длина соленоида l =25 см, диаметр D =5 см. Определить напряженность H и индукцию B магнитного поля внутри соленоида при токе I =2 A, если сопротивление соленоида R =0,2 Ом. Удельное сопротивление меди r =17·10­­­-9 Ом·м.

420. Внутри соленоида с числом витков N =200 с никелевым сердечником (m =200) напряженность однородного магнитного поля H =10 кA/м. Площадь поперечного сечения сердечника S =10 см2. Определить: 1) магнитную индукцию поля внутри соленоида; 2) потокосцепление.

421. По двум тонким проводам, изогнутым в виде колец радиусом R =10 см, текут одинаковые токи I =10 А в каждом. Найти силу взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние d между центрами колец равно 1мм.

422. Виток, диаметр которого d =20 см, может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток I =10 A. Какой вращающий момент нужно приложить к витку, чтобы удержать его в начальном положении? Горизонтальную составляющую Bг магнитной индукции поля Земли принять равной 20 мкТл.

423. Из проволоки длинной l =20 см сделаны квадратный и круговой контуры. Определить вращающие моменты сил M1 и M2, действующие на каждый контур, помещенный в однородное магнитное поле с индукцией В =0,1 Тл. По контурам течет ток I =2 A. Плоскость каждого контура составляет угол a =45° с направлением поля.

424. Электрон, ускоренный разностью потенциалов U =0,5 кВ, движется параллельно прямолинейному длинному проводнику на расстоянии r =1 см от него. Определить силу, действующую на электрон, если через проводник пропускать ток I =10 А.

425. Электрон движется в однородном магнитном поле с индукцией В =0,2 мТл по винтовой линии. Определить скорость v электрона, если радиус винтовой линии R =3 см, а шаг h =9 см.

426. Ионы двух изотопов с массами m1 =6,5×10–26 кг и m2 =6,8×10–26 кг, ускоренные разностью потенциалов U =0,5 кВ, влетают в однородное магнитное поле с индукцией В =0,5 Тл перпендикулярно линиям индукции. Принимая заряд каждого иона равным элементарному электрическому заряду, определить, насколько будут отличаться радиусы траекторий ионов изотопов в магнитном поле.

427. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией В =0,5 Тл. Определить момент импульса L, которым обладала частица при движении в магнитном поле, если её траектория представляла собой окружность радиусом R =0,2 см.

428. Электрон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скоростью u=107 м/с. Длина конденсатора l =5 см. Напряжённость электрического поля конденсатора Е =10 кВ/м. При вылете из конденсатора электрон попадает в магнитное поле, перпендикулярное к электрическому полю. Индукция магнитного поля В =10 мТл. Найти радиус R и шаг h винтовой траектории электрона в магнитном поле.

429. Заряженная частица прошла ускоряющую разность потенциалов U =104 В и влетела в скрещенные под прямым углом электрическое (Е =10 кВ/м) и магнитное (В =0,1 Тл) поля. Определить отношение заряда частицы к её массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

430. Протоны ускоряются в циклотроне в однородном магнитном поле с индукцией В =1,2 Тл. Ускоряющее напряжение 30 кВ. Максимальный радиус кривизны траектории протонов R =40 см. Определить: 1) какое количество оборотов сделает протон до приобретения максимальной кинетической энергии; 2) время ускорения протонов до ЕКмакс.

431. Два бесконечных прямолинейных параллельных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии d. Чтобы их раздвинуть до расстояния 2 d, на каждый сантиметр длины проводника затрачивается работа А =138 нДж. Определить силу тока в проводниках.

432. Квадратный проводящий контур со стороной l =20 см и током I =10 А свободно подвешен в однородном магнитном поле с индукцией В =0,2 Тл. Определить работу, которую необходимо совершить, чтобы повернуть контур на 180° вокруг оси, перпендикулярной направлению магнитного поля.

433. В однородном магнитном поле с индукцией В =0,2 Тл находится квадратный проводящий контур со стороной l =20 см и током I =10 А. Плоскость контура составляет с направлением поля угол a =30°. Определить работу удаления контура за пределы поля.

434. Круговой проводящий контур радиусом r =5 см и током I =1 А находится в магнитном поле, причём плоскость контура перпендикулярна направлению поля. Напряжённость магнитного поля Н =10 кА/м. Определить работу, которую необходимо совершить, чтобы повернуть контур на 90° вокруг оси, совпадающей с диаметром контура.

435. В однородном магнитном поле с индукцией В =0,5 Тл движется равномерно проводник длиной l =10 см. По проводнику течёт ток I =2 А. Скорость движения проводника u=20 см/с и направлена перпендикулярно к направлению магнитного поля. Определить работу А перемещения проводника за время t =10 с и мощность Р, затраченную на это перемещение.

436. В однородном магнитном поле с индукцией В =1 Тл находится плоская катушка из 100 витков радиусом r =10 см, плоскость которой с направлением поля составляет угол b =60°. По катушке течёт ток I =10 А. Определить работу, которую необходимо совершить, чтобы удалить эту катушку из магнитного поля.

437. По проводу, согнутому в виде квадрата со стороной длиной a =20 см, течет ток I =20 А, сила которого поддерживается неизменной. Плоскость квадрата составляет угол b =20° с линиями индукции однородного магнитного поля (B =0,1Тл). Вычислить работу, которую необходимо совершить для того, чтобы удалить провод за пределы поля.

438. Два прямолинейных длинных параллельных проводника находятся на расстоянии d1 =10 см друг от друга. По проводникам в одном направлении текут токи I1 =20 А и I2 =30 А. Какую работу Al надо совершить (на единицу длины проводников), чтобы раздвинуть эти проводники до расстояния d2 =20 см?

439. По кольцу, сделанного из тонкого гибкого провода радиусом r =10 см, течет ток I =100 А. Перпендикулярно плоскости кольца возбуждено магнитное поле с индукцией В =0,1 Тл, по направлению совпадающей с индукцией В1 собственного магнитного поля кольца. Определить работу внешних сил, которые, действуя на провод, деформировали его и придали ему форму квадрата. Сила тока при этом поддерживалась неизменной. Работой против упругих сил пренебречь.

440. В однородном магнитном поле с индукцией В =0,01 Тл находится прямой провод длиной l =8 см, расположенный перпендикулярно линиям индукции. По проводу течёт ток I =2 А. Под действием сил поля провод переместился на некоторое расстояние S, при этом была совершена работа А =80 мкДж. Определить это расстояние S.

441. В магнитном поле, индукция которого изменяется по закону B=a+bt2, где b =10-2 Тл/с2, расположена квадратная рамка со сторо­ной a =20 см, причем плоскость рамки перпендикулярна вектору магнитной индукции. Определить ЭДС индукции в рамке в момент времени t =5 c.

442. Медный диск радиусом a =10 см вращается в однородном магнитном поле, делая 100 оборотов в секунду. Магнитное поле направлено перпендикулярно к плоскости диска и имеет напряжен­ность H =7,96·105 А/м. Две щетки, одна на оси диска, другая на окружности, соединяют диск с внешней цепью, в которой включены последовательно резистор с сопротивлением R =10 Ом и амперметр. Что показывает амперметр?

443. Горизонтальный стержень длиной 1 м вращается вокруг вертикальной оси, проходящей через один из его концов. Ось вращения параллельна силовым линиям магнитного поля, индукция которого равна 5·10–5 Тл. При каком числе оборотов в секунду разность потенциалов на концах этого стержня будет 1 мВ?

444. В однородном магнитном поле, индукция которого равна 0,1 Тл, вращается катушка, состоящая из 200 витков. Ось вращения катушки перпендикулярна ее оси и направлению магнитного поля. Период вращения катушки равен 0,2 с, площадь поперечного сечения катушки 4 см2. Найти максимальную ЭДС индукции во вращаю­щейся катушке.

445. В однородном магнитном поле, индукция которого 0,8 Тл, равномерно вращается рамка с угловой скоростью 15 рад/с. Площадь рамки 150 см2. Ось вращения находится в плоскости рамки и состав­ляет 30° с направлением силовых линий магнитного поля. Найти максимальную ЭДС индукции во вращающейся рамке.

446. Скорость самолёта с реактивным двигателем равна 950 км/ч. Найти ЭДС индукции, возникающую на концах крыльев самолёта, если вертикальная составляющая напряжённости магнитного поля земли 39,8 А/м и размах крыльев самолёта 12,5 м.

447. В однородном магнитном поле с индукцией 1 Тл равномерно вращается рамка, содержащая 1000 витков провода. Площадь рамки 150 см2. Рамка вращается с частотой 10 об/с. Определить мгновен­ное значение ЭДС, соответствующее углу поворота рамки 30°. Ось вращения перпендикулярна линиям индукции и лежит в плоскости рамки.

448. Проволочный виток радиусом 4 см и сопротивлением 0,01 Ом находится в однородном магнитном поле с напряжённостью 5000 А/м. Плоскость рамки составляет 30° с линиями напряжённости. Какое количество электричества протечёт по витку, если магнитное поле выключить?

449. Проволочное кольцо радиусом R =10 см лежит на столе. Какое количество электричества q протечёт по кольцу, если его перевернуть с одной стороны на другую? Сопротивление кольца r =1 Ом. Вертикальная составляющая индукции магнитного поля земли В =50 мкТл.

450. Для измерения индукции магнитного поля между полюсами магнита помещена катушка, состоящая из 50 витков проволоки и соединённая с баллистическим гальванометром. Ось катушки параллельна направлению магнитного поля. Площадь поперечного сечения катушки 2 см2, сопротивлением её по сравнению с сопротивлением гальванометра можно пренебречь. Сопротивление гальванометра 2×103 Ом, его баллистическая постоянная 2×10-8 Кл/дел. При быстром выдёргивании катушки из магнитного поля гальванометр даёт отброс, равный 50 делениям шкалы. Чему равна индукция магнитного поля?

451. В магнитном поле, индукция которого равна 0,05 Тл, поме­щена катушка, содержащая 200 витков проволоки. Сопротивление катушки 40 Ом, площадь её поперечного сечения 12 см2. Катушка помещена так, что её ось составляет 60o с направлением магнитного поля. Какое количество электричества протечёт по катушке при исчезновении поля?

452. В однородном магнитном поле, индукция которого 1 Тл, находится прямой проводник длиной 20 см. Концы проводника замкнуты проводом, находящимся вне поля. Сопротивление всей цепи 0,1 Ом. Найти силу, которую надо приложить к проводнику, чтобы перемещать его со скоростью 2,5 м/с перпендикулярно линиям индукции.

453. Электрическая лампочка, сопротивление которой в горячем состоянии равно 10 Ом, подключается через дроссель к двенадцати­вольтовому аккумулятору. Индуктивность дросселя 2 Гн, сопротив­ление 1 Ом. Через сколько времени после включения лампочка загорится, если она начинает светиться при напряжении на ней 6 В?

454. Имеется катушка длиной 20 см и диаметром 2 см. Обмотка катушки состоит из 200 витков медной проволоки, площадь попе­речного сечения которой 1 мм2. Катушка включена в цепь с некоторой ЭДС. При помощи переключателя ЭДС выключается и катушка замыкается накоротко. Через сколько времени после выключения ЭДС сила тока в цепи уменьшается в 2 раза?

455. Рамка площадью S =100 см2 содержит N =1000 витков провода с сопротивлением r1 =12 Ом. К концам обмотки подключено внешнее сопротивление r2 =20 Ом. Рамка равномерно вращается в магнитном поле (B =0,1 Тл), делая n =2 об/с. Чему равно максимальное значение мощности переменного тока во внешней цепи? Ось вращения, лежащая в плоскости рамки, перпендикулярна линиям индукции.

456. Квадратная рамка из медной проволоки сечением 1 мм2 помещена в магнитное поле, индукция которого меняется по закону B=B0sinwt, где B0 =0,01 Тл, w=2p/T и T =0,02 c. Площадь рамки 25 см2. Плоскость рамки перпендикулярна к направлению магнитного поля. Найти максимальную силу тока, возникающую в рамке.

457. В соленоид длиной 50 см вставлен ферромагнитный сердечник. Число витков на единицу длины соленоида равно 400 вит./м. Найти индуктивность соленоида, если при силе тока 2 А по обмотке соленоида магнитный поток, пронизывающий поперечное сечение соленоида, равен 1,6 мВб.

458. Обмотка соленоида состоит из одного слоя плотно прилегаю­щих друг к другу витков медного провода. Диаметр провода 0,2 мм, диаметр соленоида 5 см. По соленоиду течёт ток силой 1 А. Опреде­лить, какое количество электричества протечёт через обмотку, если концы её замкнуть накоротко.

459. Тонкий медный проводник массой m =1 г согнут в виде квад­рата и концы его замкнуты. Квадрат помещён в однородное магнит­ное поле (B =0,1 Тл) так, что плоскость его перпендикулярна линиям индукции поля. Определить количество электричества q, которое протечёт по проводнику, если квадрат, потянув за противополож­ные вершины, вытянуть в линию.

460. Обмотка соленоида состоит из N витков медной проволоки, поперечное сечение которой 1 мм2. Длина соленоида 25 см и сопротивление его обмотки 0,2 Ом. Найти индуктивность соленоида. Удельное сопротивление меди 1,7×10–8 Ом×м.

461. На соленоид, длина которого равна 21 см и площадь попереч­ного сечения 10 см2, надета катушка, состоящая из 50 витков. Катушка соединена с баллистическим гальванометром, сопротивле­ние которого 103 Ом. По обмотке соленоида, состоящей из 200 витков, идёт ток силой 5 А. Какой заряд пройдёт по гальванометру, если ток соленоида станет равным нулю?

462. На соленоид длиной 144 см и диаметром 5 см надет проволоч­ный виток. Обмотка соленоида имеет 2000 витков и по ней течёт ток в 2 А. Соленоид содержит железный сердечник. Какая средняя ЭДС индуцируется в надетом на соленоид витке, когда ток в соленоиде выключается в течение 0,002 с?

463. Обмотка тороида имеет N1 =251 виток. Средний диаметр тороида 8 см, диаметр витков 2 см. На тороид намотана вторичная обмотка N2, имеющая 100 витков. При замыкании первичной обмотки в ней в течение 0,001 с устанавливается ток силой 3 А. Найти среднее значение ЭДС индукции во вторичной обмотке.

464. На соленоид длиной 20 см и площадью поперечного сечения 30 см2 надет проволочный виток. Соленоид имеет 320 витков и по нему течёт ток в 3 А. Какая средняя ЭДС индуцируется в надетом на соленоид витке, когда ток в соленоиде выключается в течение 0,001 с?

465. Две катушки имеют взаимную индуктивность, равную 0,005 Гн. В первой катушке сила тока изменяется по закону I=I0 sin wt, где I0 =10 А, w=2p/T, T =0,02 с. Найти наибольшее значение ЭДС индук­ции во второй катушке.

466. Вычислить взаимную индуктивность длинного прямого провода и прямоугольной рамки со сторонами a и b. Рамка и провод лежат в одной плоскости, причём ближайшая сторона рамки длиной a параллельна проводу и отстоит от него на расстоянии l.

467. Два концентрических тонких проводника в форме окружно­стей с радиусами a и b лежат в одной плоскости (a<<b). Найти их взаимную индуктивность.

468. На бесконечный соленоид с n витками на единицу длины и площадью поперечного сечения S намотана катушка из N витков. Найти взаимную индуктивность L12 катушки и соленоида. Прони­цаемость среды, заполняющей соленоид, равна m.

469. По соседству расположены два витка провода. По первому течёт ток I =10 А. В цепь второго включён баллистический гальвано­метр. Полное сопротивление второй цепи R =5 Ом. Чему равна взаимная индуктивность L12 витков, если при включении тока I через гальванометр проходит заряд q =10 –8 Кл?

470. Определить взаимную индуктивность L12 тороида и проходя­щего по его оси бесконечного прямого провода. Тороид имеет прямоугольное сечение ширины a. Внутренний радиус тороида r1, внешний r2. Число витков тороида N. Тороид и провод погружены в среду с проницаемостью m.

471. Длинный цилиндр радиусом R, заряженный равномерно по поверхности, вращается вокруг своей оси с угловой скоростью w. Найти энергию магнитного поля на единицу длины цилиндра, если линейная плотность заряда цилиндра равна l, а m =1.

472. При некоторой силе тока плотность энергии магнитного поля соленоида (без сердечника) w =0,2 Дж/м3. Во сколько раз увеличится плотность энергии этого поля при той же силе тока, если соленоид будет иметь железный сердечник?

473. Соленоид содержит N =1000 витков. Сила тока в обмотке I =1 А, магнитный поток через поперечное сечение соленоида Фm =0,01 Вб. Вычислить энергию магнитного поля.

474. Обмотка тороида содержит 10 витков на каждый сантиметр длины. Сердечник немагнитный. При какой силе тока плотность энергии магнитного поля равна 1 Дж/м3.

475. На стержень из немагнитного материала длиной l =50 см и сечением S =2 см2 намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определить энергию W магнитного поля внутри соленоида, если сила тока в обмотке I =0,5 А.

476. На железное кольцо намотано в один слой N =200 витков. Чему равна энергия магнитного поля, если при токе I =2,5 А магнитный поток в железе 0,5 мВб?

477. По обмотке тороида течёт ток I =0,6 А. Витки провода диамет­ром d =0,4 мм плотно прилегают друг к другу. Найти энергию магнитного поля в стальном сердечнике тороида, если площадь поперечного сечения его S =4 см2, диаметр средней линии D =30 см.

478. Индукция магнитного поля тороида со стальным сердечником возросла от B1 =0,5 Тл до B2 =1 Тл. Найти, во сколько раз изменилась объёмная плотность энергии магнитного поля.

479. Катушка индуктивностью L =2 мкГн и сопротивлением R0 =1 Ом подключена к источнику постоянного тока с ЭДС e =3 В. Парал­лельно катушке включено сопротивление R =2 Ом. После того как ток в катушке достигнет установившегося значения, источник тока отключается. Найти количество тепла, выделивше­еся на сопротивлении R после отключения источника. Сопротивле­нием источника и соединительных проводов пренебречь.

480. Железный сердечник, имеющий форму тора с квадратным се­чением, несёт на себе обмотку из N =1000 витков. Внутренний радиус тора a =0,2 м, внешний b =0,25 м. Определить энергию, запасённую в сердечнике в том случае, если по обмотке течёт ток I =1,26 А. Определение произвести приближённо, полагая напряжён­ность поля по всему сечению тороида одинаковой и равной значе­нию H в центре сечения.

 

Варианты контрольного задания № 4

 

№ варианта Номера задач контрольного задания
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

 

 

Библиографический список

1. Савельев, И. В. Курс общей физики: в 3 т. Т.2. Электричество и магнетизм. Волны. Оптика: учеб. пособие для втузов /И.В. Савельев. 3-е изд., испр. М., 1987. 496 с.

2. Трофимова, Т. И. Курс физики: учеб. пособие для инж.–техн. специальностей вузов /Т.И. Трофимова. 4 -е изд., испр. М.: Высш. школа, 1997. 542 с.

3. Курс физики: учебник для вузов: в 2 т. /Под ред. В. Н. Лозовского. 2-е изд., испр. СПб.: Лань, 2001. Т. 1. 576 с.

3. Детлаф, А. А., Яворский Б. М. Курс физики: учеб. пособие для втузов / А. А. Детлаф, Б. М. Яворский. 1989. 608 с.

4. Яворский, Б. М., Справочник по физике / Б.М. Яворский, А.А. Детлаф. 2-е изд., перераб. М.: Наука, 1985. 512 с.

5. Чертов, А. Г. Задачник по физике /А.Г. Чертов, А.А. Воробьёв. 5-е изд., перераб. и доп. М., 1988. 526 с.

6. Волькенштейн, В. С. Сборник задач по общему курсу физики: [для втузов] /В.С. Волькенштейн. 11-е изд. перераб. М.: Наука, 1985. 381 с.

7. Беликов, Б. С. Решение задач по физике. Общие методы: учеб. пособие для вузов / Б.С. Беликов. М.: Высш. школа, 1986. 255 с.

 

ПРИЛОЖЕНИЯ

 

 

Приложение 1

 

Приложение 2

 

Удельное сопротивление проводников (при 0 0С), мкОмּм

Алюминий 0,025 Нихром  
Графит 0,039 Ртуть 0,94
Железо 0,087 Свинец 0,22
Медь 0,017 Сталь 0,10

 

 

Содержание

Предисловие......... 3

Содержание теоретического курса...... 3

1. Электростатика и постоянный ток..... 5

1.1. Электрический заряд. Закон сохранения заряда.

Закон Кулона. Напряженность поля..... 5

1.2. Принцип суперпозиции полей...... 7

1.3. Поток напряженности. Теорема Гаусса

для электростатического поля в вакууме.... 8

1.4. Потенциал электростатического поля.

Работа совершаемая силами электростатического поля

при перемещении в нем электрического заряда... 9

1.5. Примеры применения теоремы Гаусса к расчету

электростатических полей...... 10

1.6. Электрическое поле в диэлектрической среде.

Дипольные моменты молекул диэлектрика.

Поляризация диэлектрика...... 12

1.7. Теорема Гаусса для электростатического поля в среде.. 13

1.8. Условия для электростатического поля на границе раздела

изотропных диэлектрических сред..... 14

1.9. Проводники в электростатическом поле.

Электроемкость проводника...... 14

1.10. Взаимная емкость. Конденсаторы..... 15

1.11. Потенциальная энергия системы точечных зарядов.

Энергия заряженного проводника и электрического поля. 16

1.12. Постоянный электрический ток. Сила и плотность тока. 16

1.13. Законы постоянного тока. Сторонние силы... 18

1.14. Правила Кирхгофа....... 19

Примеры решения задач...... 20

Задачи для самоконтроля...... 28

Контрольное задание №3...... 30

2. Магнетизм......... 38

2.1. Сила Лорентца и сила Ампера. Вектор магнитной индукции. 38

2.2. Закон Био и Савара. Принцип суперпозиции.

Магнитные поля прямого и кругового токов... 40

2.3. Магнитное взаимодействие проводников с токами.

Контур с током в магнитном поле..... 41

2.4. Циркуляция магнитного поля (закон полного тока) в вакууме.

Теорема Гаусса для магнитного поля..... 42

2.5. Работа перемещения проводника с током в магнитном поле. 43

2.6. Движение заряженных частиц в магнитном

и электрическом полях....... 44

2.7. Магнитные моменты электронов и атомов.

Намагниченность вещества...... 45





Поделиться с друзьями:


Дата добавления: 2016-12-03; Мы поможем в написании ваших работ!; просмотров: 3289 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.