Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение задач 1—6 из учебника




Задача 1. Как обычно, первая задача темы несложная — она проверяет понимание материала листа определений (а заодно заставляет детей вспомнить материал из курса математики о различии строгих и нестрогих неравенств).

Ответ: СПРОСОНЬЯ, ПОПРЫГУНЬЯ, ГОВОРУНЬЯ, ХВАСТУНЬЯ.

Задача 2. Здесь, как и в предыдущей задаче, для решения достаточно понимания того, что такое длина цепочки.

Решение задачи:

Цепочка Г Е Ж И Н П
Длина цепочки            

Задача 3. Задача на повторение понятий «следующий», «предыдущий» и понятий, относящихся к общему порядку бусин в цепочке. В этой задаче используется и новое понятие — «длина цепочки». Подходящих решений в задаче много, в частности, потому, что о второй и третьей бусинах цепочки в условии вообще не говорится. Зато к четвёртой бусине относятся сразу два утверждения — первое и третье.

Задача 4. При решении задачи дети могут использовать разные стратегии. Кто-то сразу пометит в мешках все пары одинаковых букв. Кто-то будет помечать и дописывать буквы одновременно. Кто-то, возможно, вообще не захочет пользоваться пометками. В процессе работы в мешках могут появиться «лишние» буквы, например, ученик допишет в один из мешков букву Ш. Её необязательно вычёркивать: чтобы поправить дело, достаточно в другой мешок тоже дописать эту букву. Попросите детей проверить своё решение самостоятельно — соединить одинаковые буквы в пары и проверить, не осталось ли непарных букв.

Задача 5 (необязательная). Повторяем тему «Таблица для мешка», используя при этом знаки дорожного движения. Задача нетрудная, но достаточно объёмная. Эта задача может стать перекидным мостиком к классному часу по правилам дорожного движения. Можно обсудить знаки, используемые в этой задаче, можно поиграть с ребятами в игру «Кто знает, что обозначает этот знак?». Все знаки, которые ребята вспомнят, пометьте прямо в таблице. Остальные знаки можно распределить по рядам и попросить выяснить их назначение у родителей или посмотреть в правилах дорожного движения. Ниже приводятся названия и назначение знаков, встречающихся в задаче, и заполненная таблица.

По окончании решения можно организовать взаимную проверку: попросите учащихся, которые решали задачу, сравнить таблицы и, если они не окажутся одинаковыми, выяснить, кто допустил ошибку. После заполнения таблицы ребята легко найдут четвёрку одинаковых знаков — «Полоса для маршрутных транспортных средств».

Ответ:

Задача 6 (необязательная). Данная задача относится к числу непростых, поскольку в условии довольно много утверждений. Все эти утверждения нужно проанализировать по отдельности, а затем сопоставить между собой. При этом новое понятие («длина цепочки») используется более содержательно, чем в похожей задаче 3. После такой работы с утверждениями выяснится, что требуется построить две цепочки, каждая из которых состоит из пяти одинаковых цифр, причём нижняя цепочка — из пяти пятёрок, а верхняя — из пяти «не пятёрок».

Урок «Цепочка цепочек»

К настоящему моменту дети уже привыкли к цепочкам и легко выделяют их в объектах и явлениях окружающего мира. Цепочки цепочек тем не менее могут показаться им какой-то экзотикой. В то же время вокруг нас можно найти много примеров цепочек цепочек. Например, рассказывая о том, что ребёнок делает обычно с утра, он говорит: «Утром встал, сделал зарядку, умылся, оделся, позавтракал, пошёл в школу». При этом в каждом событии этой цепочки нетрудно выделить внутреннюю структуру: зарядку разбить на отдельные упражнения; уточнить, в какой последовательности ребёнок надевает предметы одежды; маршрут в школу разделить на отдельные прямолинейные участки и повороты. Устная речь воспринимается как последовательность слов (и в некоторых письменностях почти каждое слово отображается своим иероглифом), но во многих языках слова записываются в виде цепочек букв. В арифметических выражениях отдельные числа могут либо считаться бусинами цепочек, либо представляться как последовательности цифр. Использование скобок и подстановка выражения вместо переменной — примеры явлений того же рода.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 398 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2236 - | 2194 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.