Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общие сведения о расчетных схемах




Механизмы мостовых кранов состоят из большого числа сосредоточенных и распределенных масс. Исследование движения таких систем в общем виде практически невозможно. Для изучения главных динамических процессов в механизме составляется идеализированная расчетная схема.

Чаще всего движущиеся узлы механизма представляют собой массивные и жесткие тела, которые перемещаются в течение переходного процесса почти как одно целое. Такие узлы считают абсолютно жесткими, а всю их массу предполагают сосредоточенной в точках, совпадающих с центрами тяжести. К таким «точечным массам» можно отнести груз, вращающиеся части двигателя, тормозной шкив, зубчатые колеса, барабаны и др.

Общая деформация механизма определяется главным образом упругостью валов, канатов и других элементов, имеющих малую массу. Эти элементы можно считать с известным приближением безмассовыми и абсолютно упругими.

Таким образом, расчетную схему механизма можно представить рядом точечных масс, соединенных невесомыми абсолютно упругими связями.

Если считать законы изменения внешних нагрузок, действующих на такую систему, заранее заданными и пренебречь- волновыми процессами при распространении деформаций вдоль кинематической цепи, упругой податливостью в местах сочленения кинематических пар, затуханием колебаний вследствие вязкого трения, конструкционного демпфирования и утечек энергии через опоры, изменением исходных параметров системы, то можно достаточно точно аналитически описать переходный процесс.

Зная характер изменения и величину динамических нагрузок в упругих элементах мостовых кранов, можно обоснованно проводить расчеты несущей способности, прочности и долговечности (как по выносливости, так и по износу), а также изыскивать эффективные меры повышения их надежности.

В составе каждого механизма всегда есть вращающиеся и поступательно движущиеся узлы. Для большей наглядности динамического взаимодействия отдельных масс друг с другом их располагают на одной какой-нибудь упругой связи. В таком случае говорят, что массы «приводят» к одной связи. Такая расчетная схема называется эквивалентной или приведенной расчетной схемой. Анализируя динамические процессы в такой схеме, необходимо помнить о том, что имеем дело с приведенной схемой, в которой все расчетные параметры: и нагрузки, и массы (моменты инерции, маховые моменты), и коэффициенты жесткости имеют приведенное значение.

Расчетные параметры можно приводить в любое заранее выбранное место механизма, на любой его упругий элемент.

Если приведение произведено на какой-нибудь вал механизма, то тогда получается расчетная приведенная схема вращательного движения (рис. 24, а). В такой схеме (рис. 24, б) нагрузки характеризуются крутящими моментами М, инерционные свойства масс — моментами инерции J или маховыми моментами , упругость кинематических элементов — коэффициентами жесткости при кручении Скр.

Рисунок 4.1 - Типы расчетных схем: а и б — вращательного движения;

в — поступательного движения

 

Если приведение произведено на какой-нибудь поступательно движущийся элемент (например, канаты, цепи, рейки, штанги и т. п.), то тогда получается расчетная приведенная схема поступательного движения (рис. 4.1, в). В такой схеме нагрузки характеризуются силами (P, T, W или F), инерционные свойства движущихся узлов — их массами m, упругость кинематических элементов — коэффициентами жесткости при растяжении или сжатии С.

В качестве примера рассмотрим составление расчетной схемы кранового механизма подъема (рис. 4.1, а). Моменты инерции валов механизма ничтожно малы по сравнению с моментами инерции других узлов. Поэтому валы считаем безынерционными. Предположим, что приведение следует производить к валу I механизма. Тогда массы и жесткости вала приведения останутся неизменными (рис. 4.1, б), а массы и жесткости других валов будут иметь приведенные величины. Учитывая, что обычно массы J1 и J2 являются наибольшими, расчетную схему механизма можно представить в двухмассовой интерпретации вращательного движения (рис. 4.1, в):

.

Если же приведение нужно выполнить к грузу, тогда масса груза m8 и жесткость канатной подвески С78 останутся неизменными (рис. 4.1, г), а массы и жесткости всех вращающихся валов будут иметь приведенные величины. В этом случае расчетная схема механизма подъема будет представлена в двухмассовой интерпретации поступательного движения (рис. 4.1, г), где приве­денная масса вращающихся частей будет

,

а масса груза, представляющая собой основную поступательно движущуюся массу, будет .

Расчетные приведенные схемы вращательного и поступатель­ного движения совершенно идентичны как по простоте приведе­ния, так и по полученным результатам.

 

 

Однако для составления исходных уравнений движения схемы поступательного движения, как правило, более наглядны. Поэтому их применяют не только в механизмах, где есть поступательно движущиеся детали, но и тогда, когда все массы механизма имеют только вращательное движение (например, в механизмах вращения или поворота и т. п.). В этом случае (рис. 4.1, б) моменты инерции движущихся частей изображаются линейно связанным кружками, а нагрузочные моменты изображаются линейными векторами.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 891 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.