Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пункт 3. Расстояние от точки до плоскости.




Пусть дано уравнение плоскости и произвольная точка .

Возможно, она лежит в плоскости (тогда расстояние по формуле автоматически получится 0). Но в общем случае она не принадлежит плоскости. Мы не знаем, где основание перпендикуляра, более того, его и не потребуется искать.  

Возьмём произвольную точку в плоскости. Сделать это просто: присвоим какие-нибудь значения 2 переменным из трёх, и вычислим третью. Например, как правило, задать x,y и вычислить z.

Итак, выбрали какую-то точку в плоскости. Отрезок между и не перпендикулярен плоскости, но его проекция на нормаль - это как раз и есть кратчайшее расстояние до плоскости (d).

= .

Если подставить в уравнение плоскости (в числителе) точку, лежащую в плоскости, то получим 0. Поэтому и получится d=0. В общем же случае, результат подстановки некоторой точки, не лежащей в плоскости, в уравнение плоскости, характеризует удаление от плоскости.

 

Пункт 4. Взаимное расположение плоскостей

Пусть даны 2 плоскости.

Если рассматривать это как систему уравнений, то видим, что 2 уравнения и 3 переменных, то есть по меньшей мере одна свободная переменная. Это означает, что если решения есть, то их бесконечно много. Это и есть все точки, принадлежащие прямой, являющейся пересечением плоскостей.

Чтобы найти пересечение, достаточно решить систему уравнений, где 2 уравнения - это и есть уравнения этих плоскостей.

Если то плоскости совпадают, так как уравнения полностью пропорциональны.

Если то плоскости параллельны. Дело в том, что если из одного уравнения вычесть кратное второму, то получим все 0 коэффициенты при x, y, z, и останется противоречивое уравнение (некая ненулевая константа = 0).

Если пропорциональность нарушена среди каких-то из первых 3 дробей, то плоскости пересекаются по прямой.

 

Пункт 5. Угол между плоскостями и метод его нахождения.

Можно искать как угол между нормалями (показаны красным). Их координаты известны - это и . В то же время известно, что . Тогда = . .

 

 

Прямая в пространстве.

Для прямой на плоскости и для плоскости в пространстве есть однозначно определённое направление нормали (перпендикуляра) т.к. там размерности рассматриваемых многообразий 1 и 2 (2 и 3 соответственно), то есть «не хватает» одной размерности. А для прямой в пространстве не хватает 2 размерностей (1 и 3). Это совершенно новый случай, здесь нельзя однозначно задать перпендикуляр. Есть целая плоскость, перпендикулярная прямой, то есть бесконечное число нормалей. А вот направляющий вектор однозначно определён (с точность до его длины, конечно). Это проявится в том, что мы получим другой тип уравнений.

п.1. Построение уравнения прямой по точке и направляющему вектору.

Пусть дана точка с координатами и направляющий вектор (выделен жирно на чертеже) Представим себе, что какая-то произвольная точка с координатами лежит на этой же прямой. Тогда и коллинеарны, то есть их координаты - пропорциональны, т.е.

тогда . Это канонические уравнения прямой в пространстве.

Фактически здесь не одно а два уравнения, впрочем, это понятно: ведь прямая может быть задана как пересечение 2 плоскостей. Кстати, если перемножить 1-ю и 2-ю пропорции независимо друг от друга, и свести к обычным уравнениям, то мы и получили бы уравнения каких-то 2 плоскостей.

Если эти 3 дроби равны, то можно приравнять их к некоторому параметру t.

. Если теперь выразим x,y,z через t из каждой дроби по отдельности, получим:

- параметрические уравнения. Это физические уравнения движения, в момент времени t=0 находимся в точке , в момент времени t=1 сдвинулись к концу направляющего вектора.

Векторный вид записи этих 3 равенств: . При t=0 радиус-вектор из начала координат к исходной точке, через 1 секунду он будет направлен в конец вектора .

 

Пример. Точка (1,1,1) направляющий вектор (1,2,3).

, тогда - канонические уравнения.

Параметрические:

Если привести 2 пропорции и то получим

и , то есть и

это и есть уравнения двух плоскостей, в пересечении который лежит эта прямая.

 

Замечание. Если требуется построить уравнение прямой по 2 точкам, то направляющий вектор от 1-й ко 2-й точке, и далее известный алгортим.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 362 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.