Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгоритм поиска собственных векторов.




1. Вычислить определитель и приравнять к нулю - получится характеристическое уравнение.

2. Решить характеристическое уравнение , найти все собственные числа.

Их будет не больше, чем n, так как уравнение порядка n, так как по диагонали n элементов.

3. Подставить каждое конкретное в характеристическую матрицу, и решить однородную систему . Таких шагов может быть n. Каждый раз надо изменить диагональ и заново решить систему!

ФСР системы это и будет собственный вектор для того .

 

Пример. Найти собственные числа и векторы для .

= . Далее, . Тогда уравнение .

Рещим это уравнение: . Получим .

Теперь подставим каждое и решим системы уравнений.

:

, , система: . Общее решение: , вектор .

:

, , система: . Общее решение: , вектор .

Проверка:

, .

Никакого третьего собственного числа в этом примере быть не может, так как матрица порядка 2, и характеристическое уравнение степени 2.

 

Теорема 5. Если базис состоит из собственных векторов, то матрица оператора в этом базисе диагональна.

Доказательство.

, то есть 1-й столбец в матрице оператора это такие числа: .

Аналогично , то есть 2-й столбец . И т.д.

Таким образом, получится матрица оператора: .

Теорема 6. Следующее свойство (Ax,y) = (x,Ay) выполняется матрица А симметрична (то есть ).

Доказательство. Рассмотрим это равенство для базисных векторов: . Если оно выполняется для любой пары базисных векторов, то есть для любых индексов i, j.

, как показано раньше, это i-й столбец матрицы линейного оператора. Если скалярно умножить его на , то есть на тот вектор, где все координаты 0 и только на месте j единица, - получим j - й элемент из i - го столбца, это в матрице.

Аналогично, это i - й элемент из j - го столбца, то есть .

Таким образом, эквивалентно тому, что = для всех индексов i, j.

 

Определение. Если для линейного оператора , для любой пары векторов верно , то называется симметрическим оператором.


Лекция № 6. 07. 10. 2016

Теорема 7. Собственные векторы симметрического оператора, соответствующие разным , ортогональны.

Доказательство. Дано: , пусть первый вектор собственный и соответствует , а второй . То есть верно: и . Тогда можно записать в виде , тогда , тогда . Собственные числа разные, поэтому первый множитель не равен 0, тогда . Скалярное произведение 0, векторы ортогональны.

Следствие. Для линейного оператора, матрица которого симметрична, существует ортогональный базис, состоящий из собственных векторов.

 

Квадратичные формы.

Билинейная форма, её задание с помощью матрицы.

Рассмотрим подробнее скалярное произведение типа , А - матрица некоторого линейного оператора. Произведение квадратной матрицы на столбец это вектор-столбец, затем его скалярно умножаем на вектор , в итоге получится число. Таким образом, это некоторая скалярная функция от 2 векторов. Она линейна по каждому аргументу: если на 1 или 2 месте сумма векторов, то результат тоже представляется в виде суммы. Обозначим и назовём эту функцию билинейной формой.

Подробнее при n=2:

= = .

При произвольном n: здесь n2 слагаемых.

Фактически, это обобщённое скалярное произведение. Обычное скалярное произведение можно задать таким же способом, но с единичной матрицей Е: = . Это частный случай билинейной формы.

Теперь рассмотрим такой случай. Пусть билинейная форма вычисляется от 2 одинаковых векторов, . Обозначим и назовём эту функцию, отобрающую один вектор в число, квадратичной формой.

Квадратичная форма задаётся через скалярное произведение так: .

= .

Например, матрица задаёт такую квадратичную форму:

= = .

Очевидно, , то есть эта группа из двух слагаемых и может быть объединена. Коэффициенты и распределить поровну. Так, это то же самое, что . Но ведь тогда матрицу квадратичной формы можно сделать симметричной, перераспределить эквивалентные элементы с сохранением их суммы. Таким образом, квадратичную форму всегда можно задать симметричной матрицей. Эта же самая квадратичная форма может быть задана и такой матрицей: .

Пример. Построить матрицу квадратичной формы

.

Решение. Распределим поровну коэффициенты:

. Каждый коэффициент, стоящий при , запишем на место .

Ответ: матрица: .

* Очевидно, если матрица диагональна, то = квадратичная форма не содержит попарных произведений, а содержит только квадраты координат.

* Вспомним теорему 7 из прошлого §. Если матрица симметрична, то собственные векторы ортогональны.

* Вспомним также теорему 5 из прошлого §. Если в качестве нового базиса взять n собственных векторов, то матрица оператора в новом базисе будет диагональной.

Из всего сказанного следует, что квадратичную форму всегда можно привести к виду, не содержащему попарные произведения, а содержащему лишь квадраты, называется к «главным осям» (главные оси это направления, соответствующие собственным векторам).

Приведение к главным осям основано на поиске собственных чисел и векторов, примеры на эту тему решим подробно на практике.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 417 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2151 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.