Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение размеров частиц в дисперсной системе методом непрерывного взвешивания.




Метод непрерывного взвешивания осадка заключается в измерении увеличения массы осадка в чашечке, опущенной в оседающую суспензию и связанной кварцевой нитью с торзионными весами (рис.VI.6,7)

 

В начале опыта в измерительный стакан наливают 1л дистиллированной воды и делают отметку её уровня на стенке стакана. После этого на торзионных весах взвешивают в воде кварцевую нить с прикрепленной к ней чашечкой из фольги (Р0) и определяют глубину её погружения в жидкость h0 (разность между верхним уровнем водыи положением чашечки). Для успешного проведения опыта оптимальный вариант величин Р0 составляет не более 100 – 150 мг, а величин h0 от 8 до 12 см. Затем отбирают из этого стакана около 300 мл воды в промывочную колбу и готовят суспензию, взяв по указанию преподавателя навеску исследуемого порошка и растерев её в фарфоровой ступке с небольшим количеством воды до однородной массы.

(Рис.VI.6) (Рис.VI.7)

Приготовленную смесь переносят в литровый стакан с оставшейся водой, остатки смеси аккуратно смывают водой из промывочной колбы, доведя уровень суспензии до первоначальной отметки, после чего суспензию в стакане тщательно перемешивают. Рекомендуется производить это перемешивание, поставив стакан в положение, удобное для последующих измерений, т.е. непосредственно под коромысло торзионных весов. Сразу же после прекращения перемешивания опускают в стакан кварцевую нить с чашечкой, противоположный конец этой нити подвешивают к весам и одновременно с выключением арретира весов включают секундомер, после чего стараются сделать первое измерение не позднее 30 с от начала оседания частиц. По мере накопления осадка на чашечке заполняют таблицу (VI.1), в которой отмечают вес осевших частиц и время наблюдения.

Таблица (VI.1)

  №   Время отсчёта Вес чашечки с осевшими на ней частицами РХ, мг   Вес частиц, осевших на чашечке (P =РХ – Р0), мг Время от начала опыта t, с   1000/t

 

Рекомендуется заранее подготовить указанную таблицу для записи измерений, первые 3-4 замера сделать с интервалом в 30 с, затем по 3-4 замера с интервалом в 1мин., после чего увеличивать интервал между замерами до 2, 5, 10, 20 минут. На новый временной интервал целесообразно переходить тогда, когда вес частиц, осевших на чашечку в предыдущем измерении составит всего 1-2 мг. Опыт считается законченым, когда за 20 мин. на чашечке оседает 1-2 мг, что обычно происходит по прошествии примерно 2 часов.

По полученным данным строят седиментационную кривую (рис.VI.8) в координатах P = f(t), где: Р – вес осевших частиц, мг; t – время седиментации, с.; Формат миллиметровой бумаги, рекомендуемый для построения седиментационной кривой, А3 или А4 (при этом, если потребуется, начальный участок можно построить в более крупном масштабе).

 

 

Рис.VI.8

Для нахождения предела, к которому стремится седиментационная кривая,

строят 7 - 10 первых точек в координатах Р = f (А/t), где А = 1000 и экстраполируют полученную прямую на ось ординат. Точка пересечения соответствует величине Pmax, т.к. при t → ∞, A/t→ 0.

Из полученной седиментационной кривой можно рассчитать процентное соотношение отдельных фракций частиц в суспензии. Для этого выбирают несколько точек (обычно 10 – 15) на кривой, соответствующих временам оседания t1, t2, t3, t4 и т.д. и проводят касательные в каждой точке. Уравнение касательной в любой точке кривой седиментации имеет вид: P = Pi + (dP/dt) * ti, где dP/dt – тангенс угла наклона касательной (это уравнение Одена). Процесс седиментации монодисперсной системы, (где все частицы одного размера), графически выражался бы прямой линией, а процесс седиментации полидисперсной системы, как в нашем случае, можно представить в виде плавной кривой, состоящей из множества бесконечно малых прямых участков. Поэтому каждая касательная к кривой седиментации отсекает от оси ординат отрезок, равный весу частиц, полностью осевших к данному моменту времени. Так, касательной, проходящей через точку А, соответствует вес частиц Р1 и время оседания t1(tmin); касательной, проходящей через точку В, соответствует вес частиц Р2 и время оседания t2 и т.д. Для каждого времени оседания можно рассчитать эквивалентный радиус частиц по формуле (IV.8), преобразовав её для удобства в виде:

и рассчитав отдельно константу k: где:

h0 глубина погружения чашечки в суспензию, см; t -время оседания частиц, с.

Если воспользоваться указанными формулами, подставив в них вязкость воды

η = 0,01 пз; ускорение свободного падения g – 981 cм/ с2; а плотности 1 – ρ0) выразить в г/см3, то с учетом переводного множителя 104, величина r будет выражена в мкм (микронах).

Отношение Р1/Рmax соответствует процентному содержанию частиц первой, самой крупной фракции, с размером частиц от rmax до r1 (величину rmax сообщает преподаватель); отношение Р2/ Рmax соответствует содержанию частиц следующей фракции, с размером частиц от r1 до r2 и т.д. Эти отношения легче всего получить, измерив длины отрезков ординаты между касательными и выразив их в процентах от общей длины ординаты, соответствующей пределу седиментационной кривой (Рmax). Полученные данные записывают в таблицу (VI.2).

Таблица (VI.2).

Время оседания t, с Радиус частиц r, мкм Интервалы размеров частиц отдельных фракций, мкм Длина отрезков между касательными, мм Содержание фракций, %
         

На основании данных таблицы (VI.2) строят суммарную кривую распределения:

откладывают по оси ординат суммарное процентное содержание фракций Q, начиная с самых мелких частиц; по оси абсцисс откладывают радиусы частиц, соответствующие большему значению интервала радиусов данной фракции.

Например, если в исследуемом порошке самая мелкая фракция имела радиусы меньше 2,6 мкм, а её количество составило 17,5%, то по оси абсцисс откладывают величину 2,6 мкм, а по оси ординат – 17,5%. Следующая фракция находится в пределах 2,6 – 3,2 мкм, и её количество равно 8,2%, тогда по оси абсцисс откладывают величину 3,2 мкм, а по оси ординат сумму 17,5 + 8,2 = 23,7%и т.д.Полученный график называется интегральной кривой распределения. Естественно, на этом графике отложены не целочисленные значения радиусов частиц, а радиусы, соответствующие тем временам седиментации, которые мы выбрали при проведении опыта. При переходе от интегральной к дифференциальной кривой распределения ось абсцисс разбивают на равные интервалы радиусов, обычно этот интервал выбирают в 2 мкм (хотя бы для первых пяти точек), и находят величины приращения процентного содержания частиц ∆ Q /∆ r для каждого интервала; после чего заполняют таблицу (VI.3):

Таблица (VI.3).

R Q ΔQ ΔQ/Δr
      2,5
      5,0
- - - -

 

По данным таблицы (VI.3) строят дифференциальную кривую распределения, откладывая по оси ординат значения ∆Q/∆r, а по оси абсцисс – значения радиусов R. Каждый интервал радиусов частиц можно построить в виде прямоугольников: первый - шириной от 2 до 4 мкм, высотой 2,5; следующий – шириной 4-6 мкм, высотой 5,0 и так до максимального радиуса частиц. Затем соединяют середины прямоугольников и получают плавную кривую с одним максимумом, соответствующим наиболее вероятному размеру частиц основной фракции. Впрочем, у полидисперсной системы вполне может оказаться дифференциальная кривая с двумя максимумами.

 

 

Образец оформления протокола по этой работе.

 

Лабораторная работа:

«Седиментационный анализ методом непрерывного взвешивания осадка»

Выполнил студент ….. группы ……курса ………….….факультета

Фамилия ………… Имя……………….

 

Вес чашечки в воде 133 мг, глубина погружения h0 = 11.2 см.; вязкость 0,01пз.

Плотность: частиц дисперсной фазы 2,5 г/см3; дисперсионной среды 1,0 г/см3;

 

Таблица 1 (VI.1)

  Время от начала опыта, с Вес чашечки с осевшими на ней частицами РХ, мг   Вес частиц, осевших на чашечке (РХ – Р0), мг   1000/t
        18.87
        6.54
        3.95
        3.09
        2.75
        2.31
        1.81
        1.36
        1.03
        0.79
        0.61
        0.50
        0.40
        0.34
        0.27
        0.23
        0.19
        0.15

Седиментационная кривая.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 828 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2261 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.