Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение калорийности пищевых продуктов




Определение калорийности пищевых продуктов основаны на определении теплотворной способности веществ. Под теплотворной способностью понимают количество теплоты, которое выделяется при полном окислении единицы массы вещества, выражается обычно в килокалориях на килограмм продукта. Калорийность пищевых продуктов обычно выражается в килокалориях на 100 грамм продукта.

Для пищевых продуктов различают брутто- и нетто-калорийность.

Брутто-калорийность – валовая калорийность продукта независимо от степени его усвояемости.

Нетто-калорийность – калорийность той части продукта, которая усваивается.

В среднем нетто-калорийность примерно равно 70 % от брутто-калорийности.

Различают физическую и физиологическую калорийность пищевых продуктов.

Под физической калорийностью понимают то количество тепла, которое выделяется при сжигании продукта калориметре.

Под физиологической калорийностью понимают то количество тепла, которое выделяется при окислении продукта в человеческом организме.

Жиры и углеводы при сжигании в калориметре и при окислении в организме дают одни и те же продукты, поэтому их физическая и физиологическая калорийность равны. Калорийность жиров равна 9,3 ккал/г; углеводов 4,1 ккал/г.

Конечные продукты сгорания белков в калориметре – вода, оксиды углерода и азота; в организме человека продукты окисления белков (мочевина, креатин, креатинин и др.) содержат еще некоторый запас потенциальной энергии, поэтому физиологическая калорийность белков (равная 4,1 ккал/г) ниже физической калорийности (равной 5,7 ккал/г).

Различают несколько методов определения калорийности:

1) Физический метод определения калорийности основан на определении количества теплоты, выделившейся при сжигании точной навески продукта в калориметре.

Калориметр представляет защитный толстостенный сосуд, внутри которого расположен калориметрический сосуд, заполняемый водой, которая служит приемником тепла. Внутри калориметрического сосуда расположены термометр, мешалка для выравнивания температуры воды и калориметрическая бомба – толстостенный цилиндр, закрываемый плотной крышкой, в котором в избытке кислорода сжигается анализируемый образец. При сжигании образца в калориметрической бомбе выделяется теплота, температура воды в калориметрическом сосуде повышается, что фиксируется термометром. Калорийность продукта определяют по специальной формуле с учетом температуры до, и после сжигания образца, массы образца, массы воды, использованной при анализе.

2) Химический метод определения калорийности сводится к химическому определению количества жиров, углеводов, белков на 100 г продукта и последующему расчету физиологической и физической калорийности с учетом калорийности каждого компонента продукта.

3) Табличный метод определения калорийности опирается на имеющиеся данные по определению химического состава пищевых продуктов, которые имеются в справочниках.

Хроматография

Хроматография является одним из наиболее универсальных методов анализа состава газообразных и жидких продуктов, чем объясняется ее широкое распространение практически во всех отраслях пищевой промышленности, как в лабораторных, так и в производственных условиях. Хроматографические методы применяются для определения практически всех компонентов, содержащихся в газообразных и жидких продуктах, но особенно эффективны они при измерении содержания малых и очень малых (микро- и нанограммовых) количеств анализируемых веществ, содержащихся в пищевых продуктах в виде микропримесей или остаточных элементов, например, пестицидов, переходящих в них из сельскохозяйственного сырья, и их метаболитов, высших спиртов и эфиров в ликероводочных изделиях и т.п.

Наряду с широкими аналитическими возможностями хроматография характеризуется сравнительно простым аппаратурным оформлением и обслуживанием. Как правило, хроматографические анализаторы являются унифицированными приборами, предназначенными для анализа группы многокомпонентных газовых смесей и жидкостей.

Хроматограф представляет собой анализатор газов и жидкостей, предназначенный для определения их состава в зависимости от способности входящих в них компонентов поглощаться сорбирующими веществами. Вещества, находящиеся в газовой или жидкостной смеси, образуют определенный сорбционный ряд вида А>Б>В…, выражающий относительное сорбционное сродство его членов к сорбенту. Каждый из членов сорбционного ряда, обладая большим сорбционным сродством, чем последующий, вытесняет его из соединения и в свою очередь вытесняется последующим.

Таким образом, хроматография представляет собой физико-химический метод разделения сложных смесей газов или жидкостей, при котором разделяемые компоненты распределяются между двумя фазами, одной и которых является движущийся поток анализируемого газа или жидкости (подвижная фаза), а второй – неподвижный сорбент с развитой поверхностью (неподвижная фаза), через которую движется анализируемый поток.

В хроматографическом анализаторе газов и жидкостей анализируемое вещество с помощью устройства ввода пробы поступает в хроматограф, где оно подхватывается подвижной фазой, подающейся от источника подвижной фазы, и вводится в хроматографическую разделительную колонку. Колонка заполнена сорбентом, являющимся неподвижной фазой, через который протекает подвижная фаза. При этом осуществляется перенос анализируемого вещества вдоль сорбента, в результате чего происходит разделение смеси на отдельные компоненты. На выходе колонки разделенные фракции анализируемых веществ поступают в детектор, сигнал от которого регистрируется и представляется наблюдателю с помощью измерительного устройства.

По типу используемых подвижных и неподвижных фаз хроматография классифицируется следующим образом, представленным в таблице 1

Таблица 1

Неподвижная фаза Подвижная фаза Тип хроматографии
Твердое тело   Жидкость   Газ Жидкость Газ Жидкость Газоадсобционная Жидкостно-адсорбционная Газожидкостная Жидкостно-жидкостная

 

Газовые хроматографы предназначены для анализа сложных газовых смесей.

В качестве подвижной фазы в газовой хроматографии чаще всего используют чистые инертные газы, которые обеспечивают перемещение анализируемой смеси вдоль слоя сорбента. При этом они должны образовывать совершенную смесь с разделяемым веществом, отвечать требованиям работы соответствующих детекторов и не вступать ни в какие реакции с анализируемыми веществами. В качестве таких газов применяются азот, водород, гелий, аргон, диоксид углерода, воздух (хорошо очищенный и высушенный в специальных устройствах), реже – кислород. Все эти газы, кроме гелия, используются в сжатом виде.

В качестве сорбентов в газовой хроматографии широко используются полярные и неполярные сорбенты. Наиболее распространенными полярными сорбентами являются силикагель и алюмогель, неполярным – активный уголь. Также широко используются природные и искусственные силикаты и цеолиты. После обезвоживания они хорошо адсорбируют газ и пары.

В газожидкостной хроматографии неподвижной фазой служит жидкость, удерживаемая на носителях (твердой фазе), обладающих достаточно большой поверхностью и не реагирующих с ней даже при повышенных температурах. В качестве жидкой фазы широко используются сложные эфиры органических кислот, полиэтиленгликоль, а также растительные и животные масла, хорошо поглощающие ароматические углеводороды и другие компоненты. В качестве же твердой фазы, на которой удерживается жидкая фаза, применяются природные и искусственные силикаты с гранулами размером 0,1-0,25 мм, имеющие большую поверхность микропор. Последние и заполняются жидкой неподвижной фазой.

Жидкостные хроматографы предназначены для хроматографического (сорбционного) разделения веществ, находящихся в жидкой фазе, на их составляющие компоненты.

В качестве подвижной фазы, называемой в жидкостной хроматографии растворителем, используются жидкости, отвечающие следующим требованиям: обладают достаточной растворяющей способностью; не взаимодействуют с материалом колонки и с неподвижной фазой; обеспечивают совместимость растворителя и детектора.

Известно большое число растворителей, применяемых в качестве подвижной фазы в жидкостных хроматографах, которые подбираются, как правило, для анализа различных веществ эмпирически. Достаточно широко используются в качестве растворителей различные спирты и эфиры (этиленгликоль, метанол, этанол, пентан, уксусная кислота, пиридин, диоксан, бензол, диэтиловый эфир и многие другие). Растворители, как правило, хранятся в специальных резервуарах из нержавеющей стали или тефлона, снабженных некоторыми дополнительными устройствами для дегазации, обезвоживания, поддержания необходимой температуры и др.

В качестве подвижной фазы в жидкостной хроматографии используются твердые сорбенты или жидкие, наносимые на поверхностно-пористые насадки (носители). В качестве твердых сорбентов широко применяются такие полярные сорбенты, как силикагель, окись алюминия или другие неорганические вещества, а также активный уголь, являющийся наиболее распространенным неполярным сорбентом.

В качестве неподвижной фазы в жидкостно-жидкостной хроматографии используются жидкие адсорбенты, наносимые на твердое непроницаемое ядро – твердый носитель. В качестве таких твердых носителей применяются зерна силикагеля, ионообменных смол, поверхностно-травленных диатомитов, пористых стекол и др. с диаметром частиц сферической формы около 40 мкм. В качестве жидких неподвижных фаз, наносимых на носитель, широко применяются углеводородные полимеры, некоторые амины (например, этилендиамин), хлороформ, триэтиленгликоль и др. Обычно для разделения полярных веществ используют полярные неподвижные фазы и относительно неполярные подвижные фазы, причем этот выбор осуществляется главным образом эмпирически.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 782 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2489 - | 2301 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.