Пи. Я хотел бы сначала вернуться назад в период до Дзеты или даже до Омеги, к трем основным методам формирования теории: устранению монстров, устранению исключений и методу доказательств и опровержений. Оба они начинали с одной и той же наивной догадки, но кончили различными теоремами и различными теоретическими терминами. Альфа уже очертил некоторые аспекты этих различий[149], но его обзор недостаточен – особенно в случае устранения монстров и метода доказательств и опровержений. Альфа думал, что устраняющая монстры теорема «за тождеством лингвистического выражения скрывает существенное улучшение» наивной догадки: он думал, что Дельта класс «наивных» многогранников постепенно сжимал в класс, очищенный от неэйлеровых монстров.
Гамма. А что было дурного в обзоре Альфы?
Пи. То, что не устранители монстров сжимают понятия, это опровергатели расширяют их.
Дельта. Слушайте, слушайте!
Пи. Вернемся назад ко времени первых исследователей нашего вопроса. Они были зачарованы прекрасной симметрией правильных многогранников; они думали, что пять правильных тел содержат тайну космоса[150]. В то время была выставлена догадка Декарта – Эйлера, и понятие многогранника включало всякого сорта выпуклые многогранники и даже некоторые с вогнутостями. Но тогда это понятие не включало многогранников, которые не были простыми, или многогранников с кольцеобразными гранями. Для всех многогранников, которые тогда имелись в виду, Догадка в ее тогдашнем состоянии была правильна и доказательство не имело погрешностей[151].
Затем выступили опровергатели. В своей критической ревности они расширяли понятие многогранника, чтобы покрыть предметы, которые были чуждыми предложенному истолкованию. В предположенном истолковании догадка была верной, она оказалась неправильной только в непредполагавшемся истолковании, внесенном контрабандой опровергателями. Их «опровержение» не обнаружило ни неверности в первоначальной догадке, ни ошибки в первоначальном доказательстве; оно обнаружило только ложность новой догадки, которую никто не выставлял и о которой никто еще раньше не думал.
Бедный Дельта! Он храбро защищал первоначальное толкование многогранника. Он противодействовал каждому контрапримеру новым ограничением для спасения первоначального понятия…
Гамма. Но разве не Дельта изменял каждый раз своей позиции? Когда мы выставляли новый контрапример, он менял свое определение на более длинное, которое обнаруживало еще одно из его скрытых «ограничений»!
Пи. Какая чудовищная переоценка устранения монстров! Он только казался изменяющим свою позицию. Вы несправедливо обвиняли его в пользовании потайными терминологическими эпициклами в защиту упорной идеи. Его несчастием было это пышное Определение 1: «Многогранником называется тело, поверхность которого состоит из многоугольных граней», за которое опровергатели сразу же и ухватились. Но Лежандр предполагал покрыть им только свои наивные многогранники; что оно покрывало гораздо большее число, этого предложивший и не понял и не намеревался понять. Математическая публика была готова проглотить чудовищное содержание, которое медленно выплывало из этого правдоподобного, невинного по виду определения. Вот почему Дельте приходилось все время лепетать: «Я думал…» и продолжать выявление своих бесконечных «молчаливых» ограничений; все это потому, что наивное понятие никогда не было закреплено, и простое, но чудовищное, непредполагавшееся определение вытеснило его. Но вообразим другую ситуацию, когда определение правильно фиксировало предположенное толкование «многогранника». Тогда опровергателям пришлось бы выдумывать все более длинные определения, включающие монстры, скажем, для «комплексных многогранников»: «Комплексным многогранником называется агрегат (реальных) многогранников, таких, что каждая пара их спаяна конгруэнтными гранями». «Грани комплексных многогранников могут быть комплексными многоугольниками, которые являются агрегатами (реальных) многоугольников, таких, что каждая пара их спаяна конгруэнтными ребрами». Такой комплексный многогранник будет соответствовать рожденному опровержением понятию многогранника у Альфы и Гаммы – первое определение допускало также многогранники не являвшиеся простыми, а второе – грани, которые не были односвязными. Таким образом, изобретение новых определений не будет необходимым делом устранителей монстров или охранителей понятий – им могут также заниматься включатели монстров или распространители понятий[152].
Сигма. Понятия и определения – т.е. предположенные понятия и непредполагавшиеся определения – могут тогда устраивать хитрые штуки одно другому. Я никогда не думал, что образование понятий может тянуться вслед за бессознательно широким определением!
Пи. Да, может. Устранители монстров только сохраняют первоначальное определение, тогда как расширители понятий увеличивают его; любопытная вещь заключается в том, что расширение понятий идет скрыто; никто этого не сознает и так как «координатная система» всякого человека расширяется по мере того, как увеличивается объем понятий, то он становится жертвой эвристического обмана зрения, что устранение монстров сужает понятия, тогда как в действительности оно сохраняет их неизменными.
Дельта. Тогда кто же был интеллектуально нечестным? Кто сделал тайные изменения в своей позиции?
Гамма. Я допускаю, что мы были неправы, обвиняя Дельту за скрытые сжатия его понятия о многограннике; все шесть его определений означали то же самое доброе старое понятие о многограннике, которое он унаследовал от своих предков. Он определял одно и то же бедное понятие в возрастающем богатстве теоретических форм выражения или языков; устранение монстров не образует понятий, но только переводит определения на другой язык. Устраняющая монстры теорема не представляет улучшения наивной догадки.
Дельта. Вы считаете, что все мои определения были логически эквивалентными?
Гамма. Это зависит от вашей логической теории – по моей они, конечно, не были такими.
Дельта. Вы должны сознаться, что такой ответ не очень помогает. Но скажите мне, опровергали ли вы наивную догадку? Вы опровергали ее, только извращая тайком ее первоначальное толкование!
Гамма. Ну, мы опровергли ее более интересным толкованием, заставляющим работать воображение, как вы и на грезили. Это-то и составляет разницу между опровержениями, которые только обнаруживают глупую ошибку, и опровержениями, являющимися большими событиями в росте знания. Если вследствие неумения считать вы нашли бы, что «для всех многогранников » и я исправил бы вас, то я не назвал бы это «опровержением».
Бета. Гамма прав. После откровения Пи мы могли бы колебаться называть наши контрапримеры логическими контрапримерами, так как они все же не являются несовместными с догадкой в ее первоначально предполагавшемся толковании: однако они определенно будут эвристическими контрапримерами, так как побуждают рост знания. Если бы нам пришлось принять узкую логику Дельты, то знание не возрастало бы. Предположим, что кто-нибудь с узкой системой понятий познакомится с данным Коши доказательством эйлеровой теоремы. Он найдет, что все этапы этого мысленного эксперимента легко могут быть выполнены на любом многограннике. Он примет как очевидный, не вызывающий сомнения «факт», что все многогранники являются простыми и что все грани односвязны. Ему никогда не придет в голову превратить свои «очевидные» леммы в условия для некоторой исправленной догадки и таким образом построить теорему, – потому что отсутствует стимул контрапримеров, показывающих, что некоторые «тривиально истинные» леммы неверны. Таким образом, он будет думать, что «доказательство» без всякого сомнения устанавливает истинность наивной догадки, что ее правильность вне всяких сомнений. Но его «уверенность» совсем не будет признаком успеха, она только симптом отсутствия воображения, концептуальной бедности. Она создает уютную удовлетворенность и препятствует росту знания[153].