Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ограниченные, выборочные, составные и приближенные ряды




Ограниченные ряды. При необходимости ограничения основных и дополнительных рядов в их обозначениях указываются предельные члены, которые всегда включаются в ограниченные ряды.

Пример. R10(1,6,...) – ряд R10 с числом 1,6 включительно в качестве нижнего члена. R20(...,56) – ряд R20 с числом 56 включительно в качестве верхнего члена.

В ряд E12 (5,6…22) входят следующие числа 5,6; 6,8; 8,2; 10; 12; 15; 18; 22.

Выборочные ряды: это ряды, которые получают отбором каждого
2, 3, 4,...,i-го члена основного или дополнительного ряда, начиная с любого члена. В обозначение выборочного ряда обязательно присутствует косая черта, после которой указывается какой член ряда подлежит выборке. Если ряд не ограничен, то должен быть указан хотя бы один член.

Пример. R5/2(1,…,40) -выборочный ряд, составленный из каждого второго члена ряда R5, ограниченный 1 и 40, т.е. 1; 2,5; 6,3; 16; 40.

E12/3 (0,22…12) состоит из следующих чисел: 0,22; 0,39; 0,68; 1,2; 2,2; 3,9; 6,8; 12.

R10/3(…,50,…) – выборочный ряд, состоящий из каждого третьего члена, включающий число 50 и неограниченный в обоих направлениях.

Выборочные ряды используются в тех случаях, когда уменьшение градаций создает дополнительный технический или экономический эффект по сравнению с использованием полных рядов. Пример: выборочный ряд R10/2 удачно применен для стандартизации круглых металлических стержней, что дает значительный экономический эффект.

Составные ряды. Получены путем сочетания различных основных и (или) выборочных рядов. Составной ряд в различных интервалах имеет неодинаковые знаменатели, однако конечные и начальные члены смежных рядов должны быть обязательно одинаковыми.

Пример. R20(1,...,2)R10/2(2,...,10)R5/2(10,...,100) Этот ряд состоит из одного ограниченного и двух составных рядов.

Числа выписываются по аналогии с выборочными рядами, но при этом не следует разделять их на составляющее ряды, так как составной ряд это единое целое.

Указанный ряд R20(1,...,2)R10/2(2,...,10)R5/2(10,...,100) состоит из следующих чисел: 1; 1,12; 1,25; 1,4; 1,6; 1,8; 2; 3,15; 5; 8; 10; 25; 63; 100

Составные ряды должны применяться, если требуемая плотность значений параметра в рассматриваемом интервале неодинакова.

Ряды приближенных предпочтительных чисел. Практика стандартизации показывает, что в отдельных случаях требуются дополнительные округления стандартизованных чисел. Поэтому вместо основных рядов R применяют ряды приближенных предпочтительных чисел R’. Ряд R’ содержит числа первого округления, ряд R’’ содержит числа второго округления. ГОСТом установлены следующие положения: ряду R5 соответствует ряд R"5, ряду R10 – ряды R’10 и R”10, ряду R20 – ряды R’20 и R”20, ряду R40 – ряды R’40 и R”40.

Правило: включение приближенных предпочтительных числе в дополнительные ряды R80 и R160 не допускается.

 

Оценка уровня унификации

 

Понятие и виды унификации

 

При унификации устанавливается минимально допустимое, но достаточное число типов, видов, типоразмеров, изделий, сборочных единиц и деталей, обладающих высокими показателями качества и полной взаимозаменяемостью.

Деталь или сборочная единица, примененная в спецификации нескольких изделий называется унифицированной.

Таким образом, унификация представляет собой совокупность приемов, посредством которых разработчик приводит структурные элементы к некоторому единообразию по их содержанию или форме. В результате унификации компонентов объекта создается возможность приведения числа возможных его исполнений к некоторому меньшему их числу. Изменение каждого вида компонента по отношению к другим его видам может рассматриваться как независимое событие.

Степень уменьшения числа видов компонентов, т.е. уменьшение степени единообразия оценивается коэффициентом унификации, который определяется:

,

где E – общее число компонентов в изделии;

J – число компонентов объединённых в тождественные группы.

 

.

Виды унификации:

1) В зависимости от методических принципов осуществления унификации она может быть:

- внутритиповой (внутривидовой) - унификация семейств однотипных изделий;

- межтиповой (межпроектной) - унификация деталей, узлов, агрегатов разнотипных изделий.

2) В зависимости от области проведения унификация изделий может быть:

- заводская, которая охватывает номенклатуру изделий, выпускаемых только одним предприятием или объединением;

- отраслевая (ведомственная) - унификация изделий или их элементов изготовляемых одной отраслью промышленности (например, унификация телевизоров и т.п.);

- межотраслевая (межведомственная) - охватывает изделия, которые находят применение в разных отраслях промышленности (например, сборочные единицы и детали общемашиностроительные: муфты, редукторы, соединения трубопроводов и т.д.).

 





Поделиться с друзьями:


Дата добавления: 2016-11-19; Мы поможем в написании ваших работ!; просмотров: 2467 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2754 - | 2314 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.