Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Эффективность точечной оценки.




Опр. Несмещенная оценка параметра называется эффективной, если её дисперсия минимальна по сравнению со всеми возможными оценками

Замечания:

1) В отличие от несмещенности и состоятельности, эффективность зависит от закона распределения

2) Для проверки эффективности можно использовать неравенство Крамера-Рао: , где ) – информация Фишера

 

Если выполняется, как равенство, то данная – эффективна.

45. Метод максимального правдоподобия.

Пусть снова . Требуется оценить векторный параметр .

Выборочный вектор – вектор (Х12…Хn), где Хi одинаково распределены и независимы (х12…хn) – реализация выборочного вектора.

Функция правдоподобия выборки:

- для непрерывного генерального – плотность распределения выборочного вектора, взятая в точке его реализации;

- для дискретного генерального – вероятность реализации данного выборочного вектора.

Обозначение

Оценками максимального правдоподобия (ММП-оценками) называются такие значения параметров (), которые доставляют максимум функции правдоподобия выборки.

Обозначим ММП-оценку вектора через . Пусть - внутренняя точка некоторого компакта S, функция Lx() дифференцируема в S. Тогда необходимым условием экстремума является равенство нулю всех производных первого порядка. Удобнее рассматривать экстремум не самой функции, а ее логарифма.

 

 

Метод моментов.

Пусть з-н распределения интервальной совокупности Х известен с точностью до параметров . Выберем m каких-либо начальных и центральных моментов , найдем теоретически их зависимость от

и приравняем эти зависимости к соответствующим выборочным моментам

Получим систему m уравнений, для нахождения оценок:

Пример. Пусть (равномерное распределение)

Найти ММ оценки параметров а и b:

Находим:

 

Общее: и для 47 и 48:

Пусть неизвестная функция генеральной совокупности зависит от некоторого параметра . Нужно по наблюдениям оценить параметр. Для построения оценок используются статистики – функции от выборочных значений.

Примеры статистик. .

Эта оценка .

Будет рассматриваться, как приближенное значение параметра . Замечание. Как правило, для оценки параметра можно использовать несколько статистик, получая при этом различные значения параметра . Как измерить «близость» оценки к истинному значению ? Как определить качество оценки? Комментарий: Качество оценки определяется не по одной конкретной выборке, а по всему мыслимому набору конкретных выборок, т.е. по случайному выборочному вектору , поэтому для установления качества полученных оценок моментов , следует во всех этих формулах заменить конкретные выборочные значения на СВ Xi.

; ; .

Качество оценки устанавливают, проверяя, выполняются ли следующие три свойства (требования).Требования, предъявляемые к точечным оценкам:

1. Несмещенность, т.е. .

Это свойство желательно, но не обязательно. Часто полученная оценка бывает существенной, но ее можно поправить так, что она станет несмещенной.

Иногда оценка бывает смещенной, но асимптотически несмещенной, т.е. .

2. Состоятельность, т.е. .

Это свойство является обязательным. Несостоятельные оценки не используются.

3. Эффективность.

а) Если оценки и – несмещенные, то и .

Если , то оценка более эффективна, чем .

б) Если оценки и – смещенные, тогда и .

Если , то оценка более эффективная, чем .

Где – средний квадрат отклонения оценки.

Рассмотрим использование этих свойств на примерах выбора оценок МО и дисперсии:

 

47. Выборочная дисперсия Докажем, что выборочная дисперсия является смещенной оценкой для дисперсии генеральной совокупности.

Выполним следующие преобразования

; .

Найдем МО для дисперсии:

.

.

МО не совпадает с s 2, а отличается на –s2/n – смещение. Таким образом эта оценка занимает в среднем истинное значение дисперсии на величину s2/n, правда это смещение сходит на нет при n ® ¥.

Чтобы устранить это смещение надо «исправить» дисперсию.

;

;

.

Можно доказать, что статистика S2 является и состоятельной оценкой для дисперсии генеральной совокупности. Замечание. К сожалению, на практике при оценке параметров не всегда оказывается возможным одновременное выполнение требований: несмещенности, эффективности и состоятельности.

48. Выборочное среднее: является несмещенной и состоятельной оценкой МО генеральной совокупности (X1 ,…, Xn), причем каждое Xi совпадает с m и s 2.

а) Несмещенность. По определению выборочного вектора

, причем Xi – независимые в совокупности СВ, тогда вычислим

M[Xсред]=M[(1/n)åXi]=(1/n)M[åXi]=

(1/n)åM[Xi]=(1/n)nm g.

D[Xсред]=D[(1/n)åXi]=(1/n2)D[åXi]=

(1/n2)åD[Xi]=(1/n)ns2=s2/n

б) Состоятельность Воспользуемся неравенством Чебышева:

Применим это неравенство к

При n ®¥ ,что и доказывает состоятельность .





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1887 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2261 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.