Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Непр. Случайная. Величина.




Предмет теории вероятностей.

Используется 2 основных типа моделей:

1) Детерминированная: При повторении заданного опыта в неизменных условиях, событие А происходит всякий раз.

П1. Опыт: К проводнику сопротивлением R приложено напряжение U. А={течет ток I=U/R}.

2) Вероятностная: При повторении опыта в неизменных условиях событие А может произойти или нет. Такие события и опыт называют случайными.

П2. Подбрасывают монету. A={Выпадет «герб»}.

ТВ изучает случайные события и их числовые характеристики.

Статистическая вероятность.

Еще в древности заметили статистическую устойчивость случайных явлений: если случайный опыт повторяется многократно, то отношение числа mn(A) появлений события А к числу n опытов приближается к некоторому числу P*(A). mn(A)/n= P*(A), n – велико.

P*(A) – статистическая вероятность. Используется при составлении частотных словарей, разработке клавиатуры и т.д.

 


№2 Случайные события и связанные с ними понятия. Алгебраические операции над событиями.

Случайные события.

Случайный опыт – это создание заданного комплекса условий и наблюдение результата. Результат интерпретируется как случайное событие(исход).

Пространство элементарных исходов – мн-во простейших(неразложимых в рамках данного опыта на более простые) взаимоисключающих исходов так, что опыт всегда заканчивается появлением одного и только одного элементарного исхода .

Случайное событие – любое подмн-во пр-ва элем. исходов заданного случайного опыта. Если результат опыта , то событие А произошло.

Основные понятия связанные со случайными событиями:

1) Всё пр-во элементарных исходов в называется достоверным событием. Очевидно достоверное событие происходит в любом опыте.

2) Пустое множество Ǿ называется невозможным событием. Очевидно невозможное событие не происходит в опыте.

3) Суммой событий А и В называется событие А+В состоящее из элем исходов входящих в мн-во . Т.о. событие А+В состоит в том что произошло хотябы одно из событий А и В.

4) Произведение А и В это событие сост. из элементарных исходов входящих в мн-во . Т.о. произведение А и В состоит в том что А и В произошли одновременно.

5) Разность событий А и В – событие состоящее из элементарных исходов, входящих в мн-во А\В. Т.о. событие А произошло, а В нет.

6) Событие А влечет за собой В, если А – подмножество В(). Т.о. всякий раз, когда происходит А, происходит и В.

7) Событие состоит из , не входящих в А, называется противоположным А

8) События А и В называются несовместными если нет входяих в А и в В одновременно.

Св-ва:

1)Коммутативность:

А+В=В+А; АВ=ВА.

2)Ассоциативность:

(А+В)+С=А+(В+С); (АВ)С=А(ВС).

3)Дистрибутивность:

(А+В)С=АС+ВС; А+ВС=(А+В)(А+С).

 


№3 Классическое определение вероятности.

События равновероятные, если нет объективных оснований для того, чтобы, одно из них было более или менее вероятным чем другое.

Случайный опыт удовлетворяющий условиям:

а) конечно.

б) все элем. исходы равновозможны

называется классической схемой.

Пусть классическая схема, -число элементарных исходов, - число исходов благоприятствующих событию А. Тогда вероятность события А:

Р(А)= / - формула классической вероятности.

Св-ва:

1)Р(А)>0

2)

3)Если А и В несовместны, (АВ= Ǿ), то Р(А+В)=Р(А)+Р(В).

 


№4 Геометрические вероятности

Пусть случайный опыт состоит в случайном выборе точки на прямой R1 или плоскости R2 или n мерного пространства Rn.

На прямой рассмотрим только мн-ва имеющие длину, на плоскости площадь, в R3-объем, в Rn- обобщенный объем.

Длина, площадь, объем – мера множества .

Пусть случайная точка пропорциональна мере А (mes A) и не зависит от других обстоятельств. Такой случайный опыт называется геометрической схемой.

Пусть геометрическая схема, событие -измеримое мн-во. Тогда вероятностью события А называется число P(A)=mes(A)/mes()

П1. 2 судна должны подойти к причалу для разгрузки в течении суток. Одновременная разгрузка невозможна. Разгрузка любого из них длится 8 часов. С какиой вероятностью одно будет ожидать разгрузки другого?

х- время прихода однеого

 
 
 
x
y
у – время прихода другого

(х,у) в R2

={(х,у) | }

A = {(х,у) | |x-y| 1/3}

mes()=1, mes(A)=5/9;

P(A)=5/9

Cв-ва:

1)Р(А)

2)

3)А и В несовместимы.

 


№5 Понятие об аксиоматической вероятности

Пусть событию А, связанному со случайным опытом сопоставлена P(A). Это означает, что на мн-ве всех событий F определена числовая функция P(A), .

Чтобы вместе с вероятностью событий А и можно было найти А+В, АВ, А-В, , , , Ǿ, нужно чтобы эти события входили в F, т.е. чтобы F было алгеброй событий.

Если конечное или счетное мн-во, то алгеброй событий F будет мн-во всех подмн-в в .

П1. А={ из 4х карточек 1,2,3 и 4 случайно выбирают одну}

Найдем F:

Ǿ

Пусть - множество элем. исходов, F – алгебра событий. Числова функция Р(А), определенная на F, называется вероятностью, если она подчиняется аксиомам:

1) Р(А) , (аксиома неотрицательности)

2) (аксиома нормировки)

3) Для и В , таких что АВ= Ǿ. Р(А+В)=Р(А)+Р(В) (аксиома сложения)

 

1)

2) - вероятность элементарного исхода

В П1 Р

 

 

№6 Св-ва вероятности

Из основных св-в вероятности:

1) Р(А)

2)

3)АВ= Ǿ => Р(А+В)=Р(А)+Р(В)

Вытекают другие св-ва:

4)

5) Р(Ǿ)=0

6)

7)

8)Р(А+В)=Р(А)+Р(В)-Р(АВ)


№7 Условная вероятность и ее свойства. Теорема умножения.

Пусть в случайном опыте Т могут появиться события А и В. Если известно что В произошло то говорят об условной вероятности события А при условии В Р(А/В).

В произошло => реализуется один из N(B) элементарных исходов . Из N(AB) исходов благоприятствуют A

Опр. Пусть (,F,P) – вер. пространства, А, и , тогда усл.вероятностью А наз-тся число:

Замеч. 1)Аналогично, если :

2) Теорема умножения Вер-ть произведения событий равна вер-ти одного из них и умноженной на усл.вер-ть другой.

1.

2.

3.

4)Усл вер-ть обладает всеми св-ми дрю вер-тей.

5) Усл. Вер-ть P(A/B) можно рассм.,как обычную вероятность, определенную на новом про-ве Эл. Исходов

6) Для n событий формула: обобщаеться

 


№8 Независимые события, их свойства. Независимость в совокупности.

Опр. А независимое событие от В, если P(A/B)=P(A)

Свойства:

1) Свойство независимости взаимно, т.е. P(B/A)=P(B)

Т.е. А и В взаимно независимы.

2) Если А и В независимы, то P(AB)=P(A)*P(B) верно и обратное:

Опр. События А1,A2,A3,…,An независимы в совокупности, если любое из них не зависит от каждого из остальных n от всех возможных произведений этих остальных.

Опр. События A1,A2,…,An независимы в совокупности если: P(A1,A2,…,An)=P(A1)*P(A2)…P(An)

Замечание Для независимости в совокупности недостаточно попарной независимости.

 

№9 Формула полной вероятности.

Пусть события H1,…,Hn могут произойти в случайном опыте Т. Эти события образуют полную группу событийб если H1+H2+…+Hn=

Если к томуже события {Hz} попарно несовместимы (Hi,Hj 0, i j), то они образуют полную группу несовместимых событий, т.е. в каждом опыте происходит одно и только одно из этих событий.

Теорема.

Пусть в случ опыте могут произойти события А,H1,..,Hn, причем {Hi} образуют полную группу несовместимых событий, то

A=A* =A(H1+…+Hn)=AH1+…+AHn

P(A)=P(AH1)+P(AH2)+…+P(AHn)=> теоре. Умножения

P(A)=P(H1)P(A/H1)+…+P(Hn)P(A/Hn)

 

 

№10 Формула Байеса

Теорема

Пусть события H1,…,Hn могут произойти в случайном опыте Т. Эти события образуют полную группу событийб если H1+H2+…+Hn=

Если к томуже события {Hz} попарно несовместимы (Hi,Hj 0, i j), то они образуют полную группу несовместимых событий, т.е. в каждом опыте происходит одно и только одно из этих событий.

В условиях предыдущей теоремы

P(Hk/A)=(P(Hk)P(A/Hk))/P(A)

По теореме умножения P(A)*P(Hk/A)=P(A*Hk)=P(Hk)P(A/Hk) /: P(A)

P(Hk/A)=(P(Hk)P(A/Hk)/P(A))

 


№11 Схема Бернулли

Повторные испытания – это проведение n раз одного и тогоже случ опыта или проведение одновременное n одинаковых опытов.

Схема Бернулли – это случ опыт состоящий в n повторных испытаниях, причем

1) z исхода (А-успех, (не)А – неудача)

2) испытания независимы, т.е. P(A) не зависит от исходов в др. испытыниях

3) p и q=1-p не изм от пыта к опыту

Найдем вер-ть pn,m появления ровно m раз успеха в серии из т испытаний.

В силу независимости испытаний вер-ть каждого такого исхода равно Число таких элементарных исходов Потому:

 

Случайные велечины

Случайная величина = это числовая переменная, принимающая свои значения в зависимости от исхода некоторого случайного опыта

Опр. Пусть (,F,P) – вер. Пространство, соответствующее случ опыту Т. Числовая функция X=X(w), определенная на наз-тся случ величиной для числа x вещественного () мн-во x = { } принадлежит алгебре событий F.Полную инф-ю о случ величине ч содержит ее закон расп-я, позволяющий найти Верн-ть для события, связанного с x

Опр. Функцией распределения (Вер-тей) случ величины x наз функция: Fx(x)=P{X<x}

Св - ва Fx(x)

1 P{a<=x<b}=Fx(b)-Fx(a)

Пусть есть события {x<b},{x<a},{a<=x<=b}

{x<b}={x<a}+{a<=x<=b}

2 P{a<=x<=b}=Fx(b+0)-Fx(a)

3 P{a<x<b}= Fx(b)-Fx(a+0)

4 P{a<x<=b}=Fx(b+0)-Fx(a)

5 P{x=a} = Fx(a+0)-Fx(a)

Другие свойства

1 Fx(x) не убыв функция

2 0<=Fx(x)<=1

3 Fx(- )=0, Fx(+ )=1

4 Fx(x) в t точках a ГR непр слева

 

№13 Дискретная случайная величина

Опр Случайная величина X, мн-во значений которой конечно или счетно называеться случайной величиной дискретного типа (СВДТ)

Закон распределения СВДТ описываеться с помощью Fx, но удобнее представлять в виде ряда распределений

Fx(x)=P{X<x}=

Очевидно что сумма =1

Св-ва Fx(x) СВДТ:

а) кусочно постоянная

б) Fx(x)=0 при x<x1

в) в точка xi терпит разрыв 1-го рода

 


№14 Биноминальное распределение

 

Дискретная X имеет бин распределение с параметрами n, p(X~B(n,p)), если X принимает 0,1,…,n с Вер-мя p(n,k)= P{X=k}=

Очевидно B(n,p) описывает случ число успехов в серии n испытаний по схеме Бернулли с вер-тью успеха p.

Опр. Пусть X-CВДТ с рядом расп-й причем числовой ряд сх-ся, тогда m=M[x]= наз-ся математическим ожиданием (m-ср.знач.X)

Для бин распр-я:

X= , где Xk 0 1

P q p

 

M[x]=

Дисперсия B(n,p):

Т.к. Xk независимы и дисперсия кождого равна pq,то

D[X]= npq

 

№15 Распределение Пуассона

Теорема Пуассона

Пусть n->бесконечность и p->0 так что np= =const, тогда

Случайная величина X со знач 0,1,2,…,k и вер-ми pk=p{X=k}= , >0 имеем распр-е Пуассона с пар (X~Pn())

З-и Pn() описывает явления с большим числом испытаний и малой вер-тью успеха (з-н редких явлений)

Мат ожидание:

Дисперсия: Dx=

В данном случае дисперсия равна мат. ожиданию

 

 

Непр. Случайная. Величина.

Опр. X наз-ся непр, если неотриц функция Fx(x)(функция плотности расп-я), так что:

Fx(x)=P{X<x}=

Св-ва fx(x):

1. P{a<=X<b}=

2. для любого a принадлежащего IR P{X=a}=0

3. fx(x)>=0

4. (условие нормировки

5. В точках непр-ти: fx(x)=F’x(x)

 


№17 Нормальный закон распределения

 

В данном случае t есть сигма.

Непр случайная величина X распределена по нормальному з-ну распр-я с параметрами m,t(X~N(m,t)) если ее функция плотности имеет вид

Распределение N(0,1) называеться стандартизированным нормальным:

Ф(x)= -функция Лапласа

Благодаря св-ву Ф(-x)=(-Ф(x)), x>=0 в таблицу можно приводить значения Ф(x) только для x>=0

Математическое ожидание

M[x]= -> M[x]=m

Дисперсия

D[x]=

Найдем для x~N(m, ) P{a<x<b}

P{a<x<b}=

В частном случае P{/X-m/<l}=2Ф(l/ )-1


18. Случайный вектор. Функции совместного распределения вероятностей, её свойства.


19. Дискретный случайный вектор. Связь закона распределения двумерного случайного вектора с законами распределения его компонент. Независимость случайных величин. Условные законы распределения.

 


21. Математическое ожидание дискретной случайной величины, его свойства.


22. Начальные и центральные моменты

 

Опр. Начальным моментом k-ого порядка X называется число

α k [X]=M[Xk]

1) α 1 [X]=M[X]

2) X – СВДТ => α k [X]=∑ Xkp

Опр. Центр. моментом k-ого порядка X называется число

Μk[X]=M[(X-M[X])k]

1) Сл.величина X-M[X]=X (с точкой сверху) наз-ся центрир. случ. величиной.

2) μ1[X]=0

Связь между α k [X] и μ k [X].

μ k =M[(X-M[X]) ]= M[ X (-1) (M[X]) ]=

= M[X ](M[X])

=> μ k [X] = α j [X] * α [X]

 

 

23. Дисперсия случайной величины

Опр. Дисперсией случ.величины X назыв. ее второй центральный момент μ 2 [X]:

D[X] = M[(X-M[X]) ]

Для X – СВДТ: D[X] = p i

D[X] характеризует степень рассеяния, разбросанности значений X вокруг M[X].

Опр. Среднеквадратическим отклонением X назыв. число T[X] =

Свойства:

1. D[X] больше, либо равно 0

2. D[C] = 0, C=const

3. D[X] = M[X ]-M [X]

4.D[cX] = c D[X]

5.Если X и Y независимы, то D[X+Y] = D[X]+D[Y]

D[X+Y] = M[(X+Y-M[X+Y]) ] = M[(X-M[X]+Y-M[Y]) ] =

= M[(X-M[X]) ]+M[(Y-M[Y]) ] + 2M[(X-M[X])]*M[(Y-M[Y])] = D[X] + D[Y]
24. Мат.ожидание и дисперсия СВНТ

Опр. Пусть X – СВНТ с функцией плотности f x (x), причем f x (x)dx сходится абсолютно, тогда мат. Ожиданием X называется число M[X] = f x (x)dx

Опр. Пусть X – СВНТ с функцией плотности f x (x), причем f x (x)dx сходится абсолютно, тогда дисперсией X называется число: D[X] = f x (x)dx

Замечание.

1)M[X] для X – СВНТ обладает теми же свойствами, что и для X-СВДТ

2)Опр-е нач. и центр. моментов сохр. на случай непр. случ. величины. Их свойства зависят от свойств M[X].

П1. X~N(m,τ);M[X] -?

M[X] = dx=…= m = M[X]

П2. X~N(m,τ);D[X] -?

D[X] = = dx=… =


 

25. Функция случайной величины.


26. Характеристики распределения случайной величины: мода, медиана, квантили, коэффициенты асимметрии и эксцесса.


27. Характеристическая функция случайной величины, её свойства.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 503 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.