Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методические аспекты формирования понятия уравнения




УРАВНЕНИЯ И НЕРАВЕНСТВА В КУРЕ МАТЕМАТИКИ СРЕДНЕЙ ШКОЛЫ

 

Понятие уравнения в математике

Уравнение относится к числу ведущих алгебраических понятий. В математике оно рассматривается в трёх аспектах:

· как особого рода формула, являющаяся в алгебре объектом изучения;

· как средство решения текстовой задачи;

· как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.

Определение понятия уравнения в математике основано на понятии «предикат» или «предложение с переменной».

Приведём пример такого предложения: «п – есть простое число». Подставляя вместо переменной п натуральные числа, будем получать высказывания – предложения без переменной, содержащие утверждения и обладающие определёнными истинностными значениями. Так, при п = 5 получим истинное высказывание «5 – простое число», а при п = 12 - ложное высказывание «12 – простое число». Уравнение – это тоже предложение с переменной (или с несколькими переменными), которое при одних значениях переменной, принадлежащих некоторому числовому множеству D, обращается в истинное высказывание (числовое равенство), а при других – в ложное.

Определение. Уравнением называется предложение с переменной, имеющее вид равенства между двумя выражениями с этой переменной.

По аналогии с уравнением можно определить и неравенство как предложение с переменной, имеющее вид неравенства между двумя выражениями с этой переменной.

Отметим, что теория решения уравнений, неравенств и их систем, а также методы решения уравнений и неравенств отдельных видов рассмотрены в курсе НПОПМ.

 

Понятие уравнения в школе

Ввиду важности и обширности материала, связанного с понятиями уравнения и неравенства, их изучение в современной методике математики организовано в содержательно – методическую линию уравнений и неравенств.

Учитывая приведённые выше аспекты функционирования понятия уравнения в математике, целесообразно выделить три основных направления развёртывания линии уравнений и неравенств школьного курса алгебры.

1. Теоретико – математическое, которое раскрывается в двух аспектах:

· выделение и изучение наиболее важных классов уравнений, неравенств, систем;

· изучение обобщённых понятий, относящихся ко всей линии в целом, что позволяет сформировать обобщённый аппарат теории (выделить общие понятия линии: неизвестное, равенство, равносильность, логическое следствие, система и совокупность уравнений (неравенств); общие и частные методы решения).

2. Прикладное, связанное с решением текстовых задач, как одним из видов математического моделирования.

3. Систематизирующее, то есть устанавливающее взаимосвязи с другими содержательно-методическими линиями: числовых систем, тождественных преобразований, функциональной и другими.

В связи с выше сказанным, определим цели изучения линии уравнений и неравенств в школе:

· формирование теоретических знаний;

· формирование умений решать уравнения и неравенства определённых видов, их систем и совокупностей;

· обучение решению текстовых задач для формирования представлений об уравнении (неравенстве) как средстве математического моделирования;

· установление взаимосвязей линии уравнений и неравенств с другими содержательно-методическими линиями школьного курса математики в процессе решения целесообразно подобранных задач.

Содержание учебного материала

Классы.

Смотри практические занятия.

Уравнения

Класс.

Формируются понятия уравнения с одной переменной, решения или корня уравнения, выясняется, что значит решить уравнение. Вводится понятие равносильных уравнений. Рассматриваются свойства:

· если в уравнении перенести слагаемые из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

· если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Отмечается, что указанные свойства уравнений можно доказать, опираясь на соответствующие свойства числовых равенств.

Изучаются линейные уравнения с одной переменной, уравнения, решаемые на основании условия равенства произведения нулю, линейные уравнения с двумя переменными и их системы. Решаются текстовые задачи на составление уравнений и их систем.

Класс.

Квадратные уравнения и дробные рациональные уравнения, сводимые к линейным и квадратным уравнениям. Для тех, кто хочет знать больше, уравнения с параметром.

Класс.

Элементы теории решения целых уравнений и методы их решения:

разложение на множители и замены. Для тех, кто хочет знать больше, приводится теорема о корне многочлена и теорема о целых корнях целого уравнения, которые позволяют расширить приёмы решения целых уравнений. Рассматриваются возвратные уравнения для частного случая симметрических уравнений (возвратным называется уравнение вида Изучаются дробно-рациональные уравнения и методы их решения: приведение к целому виду, сведение к пропорции, замены. Уравнение с двумя переменными и системы уравнений второй степени с двумя переменными. Задачи, решаемые с помощью систем уравнений второй степени. Для тех, кто хочет знать больше, приёмы решения однородных, симметрических систем уравнений второй степени. Метод сведения системы к совокупности систем.

Класс.

Простейшие тригонометрические уравнения. Методы решения тригонометрических уравнений: введение вспомогательного угла, замены, разложение на множители.

Класс.

Иррациональные, показательные и логарифмические уравнения.

Неравенства

Класс.

Числовые неравенства и их свойства. Неравенства с одной переменной.

Вводится определение решения неравенства, выясняется смысл слов «решить неравенство», формируется понятие равносильных неравенств и рассматриваются следующие свойства:

· если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство;

· если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство;

· если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.

Изучаются линейные неравенства и их системы. При этом вводятся понятия системы неравенств, даётся определение решения системы неравенств с одной переменной. Для тех, кто хочет знать больше, приводятся примеры доказательства неравенств.

Класс.

Решение неравенства второй степени с одной переменной графически и методом интервалов.

Неравенства с двумя переменными и их системы.

Класс.

Простейшие тригонометрические неравенства. Решение целых и дробных рациональных неравенств методом интервалов.

Класс.

Показательные и логарифмические неравенства.

Методические аспекты формирования понятия уравнения

Уравнения рассматриваются в начальной школе, в 5,6 классах. В 7 классе понятие уравнения формируется посредством задачи: «На нижней полке в 4 раза больше книг, чем на верхней. Если с нижней полки переставить на верхнюю 15 книг, то книг на полках станет поровну. Сколько книг на верхней полке»?

Было книг Стало книг

Нижняя полка 4 х 4 х - 15

Верхняя полка х х+ 15

Так как книг стало поровну соединим полученные выражения знаком равенства: 4 х – 15 = х+ 15.

Чтобы найти неизвестное число книг, мы составили равенство. Такие равенства называются уравнениями с одной переменной или с одним неизвестным.

Нам надо найти число, при подстановке которого вместо х в уравнение 4 х – 15 = х+ 15 получается верное равенство. Такое число называется решением или корнем уравнения. Вводится определение корня или решения уравнения.

Уравнения такого вида учащиеся решали в 6 классе. Они получат х =10.

Далее на примерах уравнений школьники убеждаются, что уравнение может иметь два корня или не иметь корней. Выясняем, что значит решить уравнение. Решить уравнение - это значит найти все корни уравнения или доказать, что их нет. Поэтому, решая уравнение ответ лучше записать в виде «Ответ: 4; 5; 6», а не в виде «Ответ: х =4, х =5, х =6».

На примере уравнений убеждаем, что существуют уравнения с одинаковыми корнями. Вводим определение: «Уравнения, имеющие одни и те же корни, называют равносильными уравнениями. Уравнения, не имеющие корней, также считают равносильными». Далее приводятся два свойства (смотри содержание учебного материала), суть которых состоит в описании преобразований, не нарушающих равносильности уравнений.

К сожалению, в дальнейшем теория равносильных уравнений в общеобразовательных классах основной и даже полной школы не развивается. Основное внимание уделяется методам решения уравнений отдельных видов, которые не получают должного теоретического обоснования.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1575 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.