Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Анализ поляризованного света




 

Пусть на кристаллическую пластинку, вырезанную параллельно оптической оси, нормально падает плоскополяризованный свет (рис. 283). Внутри пластинки он разбивается на обыкновенный (о) и необыкновенный (е) лучи, которые в кристалле пространственно не разделены (но движутся с разными скоростями), а на выходе из кристалла складываются.

Рис. 283

 

Так как в обыкновенном и необыкновенном лучах колебания светового вектора совершаются во взаимно перпендикулярных направлениях, то на выходе из пластинки в результате сложения этих колебаний возникают световые волны, вектор Е (а следовательно, и Н) в которых меняется со временем так, что его конец описывает эллипс, ориентированный произвольно относительно координатных осей. Уравнение этого эллипса (см. (145.2)):

(194.1)

где Е0 ил Ее— соответственно составляющие напряженности электрического поля волны в обыкновенном и необыкновенном лучах, j— разность фаз колебаний. Таким образом, в результате прохождения через кристаллическую пластинку плоскополяризованный свет превращается в эллиптически поляризованный.

Между обыкновенным и необыкновенным лучами в пластинке возникает оптическая разность хода

где d — толщина пластинки, l0— длина волны света в вакууме. Если

D =(n0 - nе)d = l/4, j = ± p/2, то уравнение (194.1) примет вид

т. е. эллипс ориентирован относительно главных осей кристалла. При Е0 = Ее(если световой вектор в падающем на пластинку плоскополяризованном свете составляет угол a = 45° с направлением оптической оси пластинки)

т. е. на выходе из пластинки свет оказывается циркулярно поляризованным.

Вырезанная параллельно оптической оси пластинка, для которой оптическая разность хода

называется пластинкой в четверть волны (пластинкой l/4). Знак плюс соответствует отрицательным кристаллам, минус — положительным. Плоскополяризованный свет, пройдя пластинку l/4, на выходе превращается в эллиптически поляризованный (в частном случае циркулярно поляризованный). Конечный результат, как уже рассматривали, определяется разностью фаз jи углом a. Пластинка, для которой

называется пластинкой в полволны и т. д.

В циркулярно поляризованном свете разность фаз jмежду любыми двумя взаимно перпендикулярными колебаниями равна ±p/2. Если на пути такого света поставить пластинку l/4, то она внесет дополнительную разность фаз ± p/2. Результирующая разность фаз станет равной 0 или p. Следовательно (см. (194.1)), циркулярно поляризованный свет, пройдя пластинку l/4, становится плоскополяризованным. Если теперь на пути луча поставить поляризатор, то можно добиться полного его гашения. Если же падающий свет естественный, то он при прохождении пластинки l/4 таковым и останется (ни при каком положении пластинки и поляризатора погашения луча не достичь).

Таким образом, если при вращении поляризатора при любом положении пластинки интенсивность не меняется, то падающий свет естественный. Если интенсивность меняется и можно достичь полного гашения луча, то падающий свет циркулярно поляризованный; если полного гашения не достичь, то падающий свет представляет смесь естественного и циркулярно поляризованного.

Если на пути эллиптически поляризованного света поместить пластинку l/4, оптическая ось которой ориентирована параллельно одной из осей эллипса, то она внесет дополнительную разность фаз ±p/2. Результирующая разность фаз станет равной нулю или п. Следовательно, эллиптически поляризованный свет, пройдя пластинку l/4, повернутую определенным образом, превращается в плоскополяризованный и может быть погашен поворотом поляризатора. Этим методом можно отличить эллиптически поляризованный свет от частично поляризованного или циркулярно поляризованный свет от естественного.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 617 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2212 - | 2047 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.