Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.
Поглощение света в веществе описывается законом Бугера*:
(187.1)
где I0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, a — коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х = 1/a интенсивность света I по сравнению с I0 уменьшается в е раз.
Коэффициент поглощения зависит от длины волны l (или частоты w ) и для различных веществ различен. Например, одноатомные газы и пары металлов (т. е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10-12 — 10-7 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения (примерно 10~10—10~7 м).
Коэффициент поглощения для диэлектриков невелик (примерно 10-3 - 10-5 см-1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда а резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т. е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.
Коэффициент поглощения для металлов имеет большие значения (примерно 103 —105 см-1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.
На рис. 271 представлены типичная зависимость коэффициента поглощения a от длины волны света l и зависимость показателя преломления n от l в области полосы поглощения.
Рис. 271
Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (nубывает с уменьшением l). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.
Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.
Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.
Эффект Доплера
Эффект Доплера в акустике (см. § 159) объясняется тем, что частота колебаний, воспринимаемых приемником, определяется скоростями движения источника колебаний и приемника относительно среды, в которой происходит распространение звуковых воли. Эффект Доплера наблюдается также и при движении относительно друг друга источника и приемника электромагнитных волн. Так как особой среды, служащей носителем электромагнитных волн, не существует, то частота световых волн, воспринимаемых приемником (наблюдателем), определяется только относительной скоростью источника и приемника (наблюдателя). Закономерности эффекта Доплера для электромагнитных волн устанавливаются на основе специальной теории относительности.
Согласно принципу относительности Эйнштейна (см. § 35), уравнение световой волны во всех инерциальных системах отсчета одинаково по форме. Используя преобразования Лоренца (см. § 36), можно получить уравнение волны, посылаемой источником, в направлении приемника в другой инерциальной системе отсчета, а следователь но, и связать частоты световых волн, излучаемых источником (v0) и воспринимаемых приемником (v). Теория относительности приводит к следующей формуле, описывающей эффект Доплера для электромагнитных волн в вакууме:
(188.1)
где v — скорость источника света относительно приемника, с — скорость света в вакууме, b = v/c, q— угол между вектором скорости v и направлением наблюдения, измеряемый в системе отсчета, связанной с наблюдателем. Из выражения (188.1) следует, что при q = 0
(188.2)
Формула (188.2) определяет так называемый продольный эффект Доплера, наблюдаемый при движении приемника вдоль линии, соединяющей его с источником. При малых относительных скоростях v (v ≪ c),разлагая (188.2) в ряд по степеням bи пренебрегая членом порядка b 2, получим
(188.3)
Следовательно, при удалении источника и приемника друг от друга (при их положительной относительной скорости) наблюдается сдвиг в более длинноволновую область (v < v0, l > l0)— так называемое красное смещение. При сближении же источника и приемника (при их отрицательной относительной скорости) наблюдается сдвиг в более коротковолновую область (v > v0, l < l0) — так называемое фиолетовое смещение.
Если q = p/2, то выражение (188.1) примет вид
(188.4)
Формула (188.4) определяет так называемый поперечный эффект Доплера, наблюдаемый при движении приемника перпендикулярно линии, соединяющей его с источником.
Из выражения (188.4) следует, что поперечный эффект Доплера зависит от b 2, т. е. при малых bявляется эффектом второго порядка малости по сравнению с продольным эффектом, зависящим от b(см. (188.3)). Поэтому обнаружение поперечного эффекта Доплера связано с большими трудностями. Поперечный эффект, хотя и много меньше продольного, имеет принципиальное значение, так как не наблюдается в акустике (при v ≪ cиз (188.4) следует, что v = v0!), и является, следовательно, релятивистским эффектом. Он связан с замедлением течения времени движущегося наблюдателя. Экспериментальное обнаружение поперечного эффекта Доплера явилось еще одним подтверждением справедливости теории относительности; он был обнаружен в 1938 г. в опытах американского физика Г. Айвса.
Продольный эффект Доплера был впервые обнаружен в 1900 г. в лабораторных условиях русским астрофизиком А. А. Белопольским (1854—1934) и повторен в 1907 г. русским физиком Б. Б. Голицыным (1862—1919). Продольный эффект Доплера используется при исследовании атомов, молекул, а также космических тел, так как по смещению частоты световых колебаний, которое проявляется в виде смещения или уширения спектральных линий, определяется характер движения излучающих частиц или излучающих тел. Эффект Доплера получил широкое распространение в радиотехнике и радиолокации, например в радиолокационных измерениях расстояний до движущихся объектов.