Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Революция в естествознании конца XIX— начала XX в. и становление идей и методов неклассической науки.




Как было выше сказано, классическое естествознание XVII— XVIII вв. стремилось объяснить причины всех явлений (включая социальные) на основе законов механики Ньютона. В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль претендовали законы электромагнитных явлений. Была создана (Фарадей, Максвелл и др.) электромагнитная картина мира. Однако в результате новых экспериментальных открытий в области строе­ния вещества в конце XIX — начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил «каскад» научных открытий.

В 1895—1896 гг. были открыты лучи Рентгена, радиоактивность (Беккерель), радий (М. и П. Кюри) и др. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу — электрон и понял, что электроны являются составными частями атомов всех веществ. Он предложил новую (электромагнитную) модель атомов, но она просуществовала недолго.

В 1911 г. английский физик Э. Резерфорд в экспериментах обнаружил, что в атомах существуют ядра, положительно заря­женные частицы, размер которых очень мал по сравнению с раз­мерами атомов, но в которых сосредоточена почти вся масса ато­ма. Он предложил планетарную модель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл α-лучи, предсказал существование нейтрона. Но планетарная модель оказалась несовместимой с электродинамикой Максвелла.

Немецкий физик М. Планк в 1900 г. ввел квант действия (по­стоянная Планка) и, исходя из идеи квантов, вывел закон излучения, названный его именем. Было установлено, что испускание и поглощение электромагнитного излучения происходит дискрет­но, определенными конечными порциями (квантами). Квантовая теория планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискрет­ных частиц. Названные открытия опровергли представления об атоме, как последнем, неделимом «первичном кирпичике» ми­роздания («материя исчезла»).

«Беспокойство и смятение», возникшие в связи с этим в фи­зике, «усугубил» Н. Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома (1913). Он предполагал, что электроны, вращающиеся вокруг ядра по нескольким стационарным орбитам, вопреки законам электродинамики не излучают энергии. Электрон излучает ее порциями лишь при пере­скакивании с одной орбиты на другую. Причем при переходе электрона на более далекую от ядра орбиту происходит увеличение энергии атома, и наоборот. Будучи исправлением и дополнением модели Резерфорда, модель Н. Бора вошла в историю атомной физики как квантовая модель атома Резерфорда—Бора.

Весьма ощутимый «подрыв» классического естествознания был осуществлен А. Эйнштейном, создавшим сначала специальную (1905), а затем и общую (1916) теорию относительности. В целом его теория основывалась на том, что в отличие от механики Нью­тона, пространство и время не абсолютны. Они органически связаны с материей, движением и между собой. Сам Эйнштейн суть теории относительности в популярной форме выразил так: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы пространство и время». При этом четырехмерное пространство-время, в котором отсутствуют силы тяготения, подчиняется соотношениям неевк­лидовой геометрии.

Научные открытия кардинально изменили представление о мире и его законах, показали ограниченность классической механики. Последняя, разумеется, не исчезла, но обрела четкую сферу применения своих принципов — для харак­теристики медленных движений и больших масс объектов мира.

Важнейшие философско-методологические выводы неоклассического периода:

1. Возрастание роли философии в развитии естествознания и других наук.

Это обстоятельство всегда подчеркивали настоящие творцы науки. Так, М. Борн говорил, что философская сторона науки ин­тересовала его больше, чем специальные результаты. И это не случайно, ибо работа физика-теоретика «теснейшим образом переплетается с философией и что без серьезного знания философ­ской литературы его работа будет впустую». Весь вопрос, однако, в том, какой именно философии ученый отдает предпочтение.

2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения.

Идеей научного познания действительности в XVIII—XIX вв. было полное устранение познающего субъекта из научной картины мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необходимых для его описания сведений. Естествознание XX века показало неотрывность субъекта, исследователя от объекта, зависимость знания от методов и средств его получения. Иначе говоря, картина объективного мира определяется не только свойствами самого мира, но и характеристиками субъекта познания, его концептуальными, методологическими и иными элементами, его активностью (которая тем больше, чем сложнее объект).

3. Субстанциальный подход, т. е. стремление свести все изменчивое многообразие явлений к единому основанию, найти их «первосубстанцию», — важная особенность науки. Попытки достигнуть единого понимания, исходящего из единого основания, на­мерение охватить единым взором крайне разнородные явления и дать им единообразное объяснение не беспочвенны и не умозрительны. Так, физика исходит из того, что «...в конечном счете, природа устроена единообразно и что все явления подчиняются единообразным законам.

4. Формирование нового образа детерминизма и его «ядра» — причинности.

5. Глубокое внедрение в естествознание противоречия и как существенной характеристики его объектов, и как принципа их познания.

Исследование физических явлений показало, что частица-вол­на — две дополнительные стороны единой сущности. Квантовая механика синтезирует эти понятия, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц. Притом проблема выбора в данных условиях между этими противоположностями постоянно воспроизводится в более глубокой и сложной форме. Таким образом, в квантовой механике все особенности микрообъекта можно понять только исходя из его корпускулярно-волновой природы.

6. Определяющее значение статистических закономерностей по отношению к динамическим.

В законах динамического типа предсказания имеют точно определенный, однозначный характер. Это было присуще классической физике, где «если мы знаем координаты и скорость материальной точки в известный момент времени и действующие на нее силы, мы можем предсказать ее будущую траекторию».

7. Кардинальное изменение способа (стиля, структуры) мышления, вытеснение метафизики диалектикой в науке. Эту сторону, особенность неклассического естествознания подчеркивали выдающиеся его представители. Так, Гейзенберг неоднократно говорил о границах механического типа мышления, о недостаточности ньютоновского способа образования понятий, о радикальных изменениях в основах естественнонаучного мышления, указывал на важность требований об изменении структуры мышления.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 515 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2245 - | 2190 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.