Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Базис и размерность пространства




Так как в линейном пространстве векторы можно складывать и умножать на числа, то из них можно составлять линейные комбинации и можно ввести понятия линейной зависимости и линейной независимости системы векторов так же, как это было сделано в разделе "Линейная зависимость векторов". На случай произвольного линейного пространства определения 10.14 и 10.15 переносятся дословно. Предложения 10.6, 10.7, 10.8 переносятся дословно вместе с доказательствами.

На основе линейной зависимости в линейном пространстве вводится определение базиса. Оно почти дословно совпадает с определением 10.16.

Определение 18.2 Базисом линейного пространства называется такая конечная упорядоченная линейно независимая система векторов, что любой вектор пространства является линейной комбинацией этих векторов.

В отличие от трехмерного пространства векторов, в некоторых линейных пространствах базис не существует.

Пример 18.2 Пусть -- линейное пространство всех многочленов с веществеными коэффициентами. Покажем, что в этом пространстве базис не существует.

Предположим противное. Пусть векторы образуют в этом пространстве базис.

Каждый вектор пространства -- это многочлен. Пусть

 
 
 
 

Из степеней многочленов выберем наибольшую и обозначим ее буквой . Возьмем многочлен . Так как и векторы образуют базис, то , где -- вещественные числа. Следовательно, является суммой многочленов степеней меньших, чем , и поэтому его степень должна быть меньше, чем . С другой стороны, по определению, многочлен имеет степень . Получили противоречие. Значит, предположение о существовании базиса неверно.

Теорема 18.1 В линейном пространстве любые два базиса содержат одинаковое число векторов.

Доказательство теоремы мы приводить не будем. Желающие могут найти его в любом учебнике по линейной алгебре, например в [1].

Определение 18.3 Линейное пространство , в котором существует базис, состоящий из векторов, называется -мерным линейным или векторным пространством. Число называется размерностью пространства и обозначается . Линейное пространство, в котором не существует базис, называется бесконечномерным.

Примером бесконечномерного пространства является пространство всех многочленов с вещественными коэффициентами. Как показано в примере 18.2 в этом пространстве базис отсутствует.

Предложение 18.1 Пространство столбцов из элементов, являющихся вещественными числами, имеет рамерность .

Доказательство. Возьмем систему векторов

Покажем, что эта система линейно независима. Составим линейную комбинацию и приравняем ее к нулю:

Преобразуем левую часть:

Следовательно,

откуда , , . Итак, система векторов -- линейно независима.

Пусть -- произвольный вектор пространства, Очевидно, что

Следовательно, вектор является линейной комбинацией векторов . Тем самым доказано, что векторы образуют базис в пространстве столбцов из элементов. Размерность пространства равна числу векторов в базисе. Следовательно, пространство -- -мерное.

Пространство столбцов из элементов, являющихся вещественными числами, обозначается .

Предложение 18.2 Пространство столбцов из элементов, являющихся комплексными числами, имеет размерность .

Доказательство такое же, как и в предыдущем предложении. Это пространство обозначается .

Пример 18.3 Пространство решений однородной системы линейных уравнений имеет базис из решений, где -- число неизвестных, а -- ранг матрицы . Этим базисом служит фундаментальная система решений (см. определение 15.5 и теорему 15.3).

Координаты векторов

Определение 18.4 Пусть -- -мерное линейное пространство, вещественное или комплексное, -- базис. Тогда произвольный вектор из представим в виде линейной комбинации векторов базиса:

Числа называются координатами вектора в базисе . Столбец из координат вектора называется координатным столбцом вектора .

Предложение 18.3 Координаты вектора в заданном базисе определяются однозначно.

Доказательство. Предположим противное. Пусть -- базис, в котором у вектора есть два различных набора координат:

Тогда

то есть

Так как наборы координат различны, то хотя бы один из коэффициентов справа отличен от нуля. Следовательно, векторы -- линейно зависимы, что противоречит определению базиса. Полученное противоречие означает, что предположение о наличии двух различных наборов координат неверно.

Предложение 18.4 Пусть в -мерном пространстве задан базис . Тогда координатный столбец суммы векторов равен сумме координатных столбцов слагаемых, координатный столбец произведения вектора на число равен координатному столбцу вектора, умноженному на это число.

Доказательство. Пусть векторы и имеют координатные столбцы и соответственно. Отсюда следует, что

Поэтому


Это равенство означает, что координатный столбец вектора имеет вид . Первая часть предложения доказана. Доказательство второй части предоставляем читателю.

Из последнего предложения следует, что как только в -мерном пространстве зафиксирован базис, каждый вектор можно заменить его координатным столбцом, и операциям сложения и умножения на число соответствуют такие же операции над их координатными столбцами. Таким образом, каждое -мерное пространство является, с точки зрения алгебры, копией пространства в вещественном случае, а в комплексном -- копией .





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 820 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2279 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.