При построении эпюр и в консольных, или жестко защемленных, балках нет необходимости вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.
Пример 1.
Рассмотрим балку длиной l защемленную одним концом и находящуюся под действием сосредоточенной силы Р (рис.6.17). Пусть для определенности Р= 4 кН, l = 2 м.
Рис.6.17
Определим внутренние силовые факторы, возникающие в балке. Воспользуемся методом сечением.
Рассечем балку поперечным сечением в произвольном месте.
Отбросим правую часть.
Заменим ее действие внутренними усилиями N - вдоль оси z, - вдоль оси y и моментом – в плоскости осей yz вокруг оси х. На рис.6.17 в соответствии с принятым правилом знаков показаны положительные направления внутренних силовых факторов.
Уравновесим отсеченную часть. Запишем уравнения статического равновесия, получим
, ,
, , ,
, , .
Из первого уравнения видно, что нормальная сила N при изгибе равна нулю, далее не будем ее определять.
Построим эпюры поперечной силы Qy и изгибающего момента Mx вдоль длины балки.
Поперечная сила постоянна по всей длине балки и равна Qy = P = 4 кН. Отложим на графике линию параллельную оси z.
Изгибающий момент Мх изменяется в зависимости от расстояния z. Вычислим его значение в двух точках: в начале z = 0 и в конце балки z = l = 2 м.
z = 0 (Мх = 0);
z = 2 м (Мх = 8 кНм).
Построим по точкам график Мх.
Построение эпюр поперечной силы Qy и изгибающего момента Mx является одним из основных этапов при расчете конструкций на изгиб. По эпюрам Qy и Mx определяется опасное сечение, т.е. сечение в котором может произойти разрушение.
Опасным сечением называется сечение, в котором изгибающий момент достигает наибольшего по модулю значения. .
В некоторых случаях опасным сечением может быть также сечение, где наибольшего значения достигает поперечная сила . В данном случае опасным является место закрепления балки.
Пример 2.
Построить эпюры и (рис.6.18).
Рис. 6.18
Порядок расчета.
1. Намечаем характерные сечения.
2. Определяем поперечную силу в каждом характерном сечении.
По вычисленным значениям строим эпюру .
3. Определяем изгибающий момент в каждом характерном сечении.
По вычисленным значениям строим эпюру , причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке.
Пример 3.
Построить эпюры , (рис.6.19).
В данном случае для правильного построения эпюры необходимо использовать приведенные выше дифференциальные зависимости.
Порядок расчета.
1. Намечаем характерные сечения.
2. Определяем поперечные силы в характерных сечениях.
3. Строим эпюру .
Характер эпюры, то есть тот факт, что эпюра пересекает ось, говорит о том, что в этом сечении момент будет иметь экстремальное значение. Действительно, пересечение эпюры с осью z означает, что в этом сечении , а из курса математики известно, что если производная функции равна нулю, то сама функция в данной точке имеет экстремальное значение.
Для определения положения “нулевого” сечения необходимо величину расположенной слева от него ординаты эпюры разделить на интенсивность распределенной нагрузки :
Рис. 6.19
Определяем изгибающие моменты в характерных сечениях.
4. Вычисляем экстремальное значение изгибающего момента в сечении, где :
Строим эпюру .