Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные дифференциальные соотношения теории изгиба




Пусть брус нагружен произвольным образом распределенной нагрузкой (рис. 6.12, а).

Рис. 6.12

 

Выделим из бруса элемент длиной и приложим по его краям положительные внутренние усилия (рис. 6.12, б). В пределах малого отрезка нагрузку можно считать распределенной равномерно. Приравняем нулю сумму проекций всех сил на вертикальную ось y и сумму моментов всех сил относительно поперечной оси x, прохо­дящей через точку С (рис. 6.12, б), получим:

;

.

Производя упрощения и отбрасывая величины высшего поряд­ка малости, получим теорему Журавского (теорему Шведлера):

откуда

Указанные дифференциальные зависимости при изгибе позволяют установить некоторые особенности эпюр поперечных сил и изгибающих моментов.

1. Эпюра Q является прямолинейной на всех участках. На тех участках, где нет распределенной нагрузки, эпюра Q ограничена прямыми, параллельными оси эпюры, а эпюра М, в общем случае, – наклонными прямыми (рис. 6.13).

2. На тех участках, где к балке приложена равномерно распределенная нагрузка, эпюра Q ограничена наклонными прямыми, а эпюра М – квадратичными параболами (рис. 6.14). При построении эпюры М на сжатых волокнах, выпуклость параболы обращена в сторону, противоположную действию распределенной нагрузки (рис. 6.15, а, б).

Рис.6.13

 

Рис.6.14

 

3. В тех сечениях, где Q = 0, касательная к эпюре М параллельна оси эпюры (рис. 6.14, 6.15). Изгибающий момент в таких сечениях балки экстремален по величине (М max, M min).

4. На участках, где Q >0, M возрастает, то есть слева на право положительные ординаты эпюры M монотонно увеличиваются, отрицательные – монотонно уменьшаются (рис. 6.13, 6.14); на тех участках, где Q < 0, M убывает (рис. 6.13, 6.14).

5. В тех сечениях, где к балке приложены сосредоточенные силы:

а) на эпюре Q будут скачки на величину и в направлении приложенных сил (рис. 6.13, 6.14).

б) на эпюре M будут переломы (рис. 6.13, 6.14), острие перелома направлено против действия силы.

6. В тех, сечениях, где к балке приложены сосредоточенные моменты, на эпюре M будут скачки на величину этих моментов, на эпюре Q никаких изменений не будет (рис. 6.16).

Рис.6.15

 

Рис.6.16

 

7. Если на конце консоли или в концевой опоре приложен сосредоточенный момент, то в этом сечении изгибающий момент равен внешнему моменту (сечения C и B на рис. 6.16).

8. Эпюра Q представляет собой диаграмму производной от эпюры M. Значит, ординаты Q пропорциональны тангенсу угла наклона касательной к эпюре M (рис. 6.14).

9. Порядок линии на эпюре Q всегда на единицу меньше, чем на эпюре M. Например, если эпюра M - квадратная парабола, то эпюра Q на этом участке - наклонная прямая; если эпюра M - наклонная прямая, то эпюра Q на этом участке - прямая, параллельная оси; если M =const (прямая, параллельная оси), то на этом участке Q =0.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1118 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.