Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка




Я сменю у каждого слагаемого знак, делать это не обязательно, просто запись будет выглядеть стандартнее что ли:

Дальше алгоритм работает по накатанной колее, важно только уметь решать неоднородное уравнение 1-го порядка:

Проведем замену:

Составим и решим систему:

Из первого уравнения найдем :

– подставим найденную функцию во второе уравнение системы:

Подобные интегралы я ласково называю дурными интегралами, они не столько сложные, сколько творческие – нужно догадаться (хотя бы научным тыком), как их решать.

Данный интеграл берётся по частям:

Творчество присутствует, помимо интегрирования по частям, использован метод подведения функции под знак дифференциала.

Таким образом:

Но это ещё не всё, выполняем обратную замену:
Если изначально было , то обратно будет

В результате получаем общее решение исходного уравнения Бернулли:

Решим задачу Коши. Найдем частное решение, удовлетворяющее начальному условию :

Ответ: частное решение:

Для монстров дифференциального исчисления вкратце напоминаю алгоритм проверки дифференциального уравнения:

1) Проверяем, выполнено ли начальное условие.
2) Берём ответ и находим производную .
3) Подставляем ответ и найденную производную в исходное ДУ. Должно получиться верное равенство.

Проверить дифференциальное уравнение Бернулли действительно не всем под силу, так как в большинстве случаев приходится находить трудную производную и выполнять громоздкую подстановку.

Когда я подбирал первый пример для этой статьи, очень хотелось разобрать распространенное уравнение Бернулли в духе , однако сразу же после замены оно становится до неприличия похоже на Пример 8 урока неоднородные дифференциальные уравнения первого порядка. Поэтому пусть лучше будет что-нибудь необычное.

Но, вы не расстраивайтесь, вот пара более простых примеров для самостоятельного решения:

Пример 2

Найти решение ДУ , удовлетворяющее начальному условию

Пример 3

Найти решение задачи Коши
,

Полные решения и ответы в конце урока.

В третьем примере перед решением целесообразно представить уравнение в стандартном виде: .

Вообще, иногда составители сборников и методичек зашифровывают уравнения до неузнаваемости, например:

Как говорится, сиди студент и разгадывай ребус – какого хрена типа этот диффур. То ли уравнение с разделяющимися переменными, то ли уравнение в полных дифференциалах, то ли еще какое-нибудь уравнение.

Пример 4

Найти решение ДУ , соответствующее начальному условию

Корни, куда же без них.

Решение: Пожалуйста, классический вид уравнения Бернулли.
Сначала убираем «игрек» из правой части, для этого делим каждую часть на :

Теперь с помощью замены нужно избавиться от «игрека» вот в этом слагаемом:

Из вышесказанного следует замена:
Найдем производную:
, откуда выразим:

Таким образом:

Получено линейное неоднородное уравнение, проведем замену:


Составим и решим систему: .

Из первого уравнения найдем :



– подставим во второе уравнение:




Таким образом:
Обратная замена: если , то
Общее решение:

Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Кстати, данное уравнение очень легко проверить.

Возможно, некоторые удивились, почему я ничего не рассказал про математика Бернулли. Забыл. Не будем нарушать традиций. Якоб Бернулли почти итальянец, жил в Швейцарии, говорил на 5-ти языках. В семье Бернулли 9 (!) математиков, одним словом – династия. Но с этой фамилией у меня стойко ассоциируются строчки гимна физмата:

Три дня в деканате покойник лежал, в штаны Пифагора одетый,
В руках Фихтенгольца он томик держал, что сжил его с белого света,
К ногам привязали тройной интеграл, и в матрицу труп обернули,
А вместо молитвы какой-то нахал прочёл теорему Бернулли.

Пример 5

Найти общее решение (или общий интеграл) дифференциального уравнения первого порядка.

Немногочисленный пример из моей выборки, когда требуется найти только общее решение. Полное решение и ответ в конце урока.

Мы рассмотрели наиболее распространенные версии уравнения Бернулли – с «игреком» во второй степени и с «игреком» под квадратным корнем. Другие варианты встречаются реже. Разберём пример, когда «игрек» находится в кубе.

Пример 6

Найти общее решение дифференциального уравнения

Решение: Данное ДУ является уравнением Бернулли. Разделим обе части на :

Избавляемся от «игрека» в «полюбившемся» слагаемом, для этого проведем замену:

В результате:

Получено линейное уравнение, проведем замену:

Решим систему:

Из первого уравнения найдем :




– подставим во второе уравнение:




Таким образом:

Проведём обратную замену: если изначально , то обратно:

В принципе, здесь можно выразить общее решение в виде:
, но, согласитесь, смотрится не очень…, словно Дедушка Мороз подсунул в подарок гнилую мандаринку. Эта фишка уже рассматривалась мной на уроке Однородные дифференциальные уравнения первого порядка. Нет-нет, испорченные продукты питания никому не предлагал =)

Лично я в похожей ситуации почти всегда склоняюсь к тому, чтобы оставить ответ в виде общего интеграла (заодно париться не нужно).

Ответ: общий интеграл:
Ещё одно решение:

Когда вам предложено найти только общее решение уравнения Бернулли, ответ полезно дополнить тривиальным решением .

Перед кремлёвским салютом рассмотрим заключительный пример с отрицательной степенью.

Пример 7

Найти частное решение дифференциального уравнения
,

Это пример для самостоятельного решения.

Ну вот, мешок с подарками пуст, надеюсь все остались довольны. Хотя, честно, Новый Год не люблю, сегодня вычитал на Анекдоте.ру меткий афоризм: 10 дней праздников обычно проводишь либо без всякой пользы либо с большим вредом.

Удачной вам сессии!

Решения и ответы:

Пример 2: Решение: Данное ДУ является уравнением Бернулли. Найдем общее решение.


Проведем замену:

Получено линейное неоднородное уравнение, замена: .



Составим и решим систему:
Из первого уравнения найдем :



– подставим во второе уравнение:



Таким образом:
Обратная замена:
Общее решение:
Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:
Красиво.

Пример 3: Решение:
Данное дифференциальное уравнение является уравнением Бернулли, разделим обе части на :

Проведем замену:


Получено линейное неоднородное уравнение, проведем замену:



Составим и решим систему:

Из первого уравнения найдем :



– подставим во второе уравнение:



Таким образом:

Обратная замена:
Общее решение:
Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Пример 5: Решение: Данное уравнение является уравнением Бернулли


Замена:

В полученном линейном неоднородном уравнении, проведем замену:



Решим систему: .
Из первого уравнения найдем :




– подставим во второе уравнение:



Таким образом:
Общее решение:
Обратная замена:

Ответ: общее решение
! Примечание: Не забывайте про тривиальное решение , его бывает не лишним включить в ответ.

Пример 7: Решение:
Данное ДУ является уравнением Бернулли.

Проведем замену:

Получено линейное неоднородное уравнение, проведем замену:



Составим и решим систему:

Из первого уравнения найдем :



– подставим во второе уравнение:



Таким образом:

Обратная замена:
Частное решение, соответствующее начальному условию , можно найти прямо из общего интеграла . Для этого вместо «икса» подставляем ноль, а вместо «игрека» – единицу:

Таким образом, частное решение:

Частное решение также выясняется и более «привычным» способом через общее решение .

Ответ: частное решение:

 





Поделиться с друзьями:


Дата добавления: 2015-05-05; Мы поможем в написании ваших работ!; просмотров: 757 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.