Выполнение работы. При решении уравнений методом касательных в качестве начального приближения к корню выбирается точка
Лекции.Орг

Поиск:


Выполнение работы. При решении уравнений методом касательных в качестве начального приближения к корню выбирается точка




При решении уравнений методом касательных в качестве начального приближения к корню выбирается точка , для которой выполняется условие Как правило, это правый или левый конец отрезка [a, b]. Следующее приближение находится по формуле Ньютона . Каждое следующее приближение будет расположено все ближе и ближе к искомой точке (корню). Вычисления прекращаются тогда, когда для найденного значения выполняется условие .

Проверим выполнение условия для левого и правого конца отрезка, содержащего корень уравнения, который был отделен ранее, в методе бисекций. Как следует из листа «Отделение корней» , , , . Очевидно, что условие выполняется для правого конца отрезка, следовательно, в качестве начального приближения к решению выберем

Оформите заголовок таблицы в соответствии с примером, показанным на рисунке 5.

Рисунок 5 – Образец оформления таблицы решения уравнения

 

В ячейке В8 установите ссылку на А4. В ячейку С8 – запишите формулу вычисления . Для нашей функции формула должна выглядеть следующим образом: . В данном случае берется из ячейки В8. В следующей строке - это с предыдущей строки. В столбце D укажите условие прекращения вычисленийпо формуле, как это было показано выше. При выводе значения корня уравнения, округлите его до четырех знаков после запятой с помощью функции ОКРУГЛ(). В столбце Е для подтверждения того, что в корне вычислим соответствующее значение функции .

В результате выполнения работы таблица должна приобрести вид, как показано на рисунке 6.

Рисунок 6 - Пример решения нелинейного уравнения методом касательных

 

Приближенное решение уравнениЙ КОМБИНИРОВАННЫМ методом ХОРД И КАСАТЕЛЬНЫХ

 

Цель работы:определить корень уравнения, приведенного в задании, используя комбинированный метод хорд и касательных, средствами MS EXCEL.

Задание: найти корень уравнения с точностью ε=0,001.





Дата добавления: 2015-05-05; просмотров: 364 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.