Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Термохимия. Закон Гесса. Определение тепловых эффектов химических реакций, теплотворной способности кормов. Определение энтропии реакции




Область науки, изучающей отношение между теплотой и работой, получила название термодинамики. Термодинамика изучает законы превращения энергии, законы перехода одного вида энергии в другой. Превращения энергии подчиняются первому, второму и третьему началам (законам) термодинамики. Причем, если первое начало формирует законы взаимного перехода, то второе и третье определяет направленность превращения энергии.

Первое начало термодинамики представляет собой всеобщий закон природы – закон сохранения энергии, открытый М.В. Ломоносовым в 1758 году. Затем он нашел свое развитие в трудах таких ученых как Г.И. Гесс, Д.Джоуль, Р. Майер, Г. Гельмгольц. Наиболее общей формулировкой закона сохранения энергии является следующая:

Общая сумма энергии материальной системы остается постоянной независимо от изменений, происходящих в ней.

Математически этот закон выражается уравнением:

å Е = const,

где Е – энергия, å - сумма, const – сокращенное constans – постоянный, неизменный.

Из этого закона следует, что энергия данной системы не исчезает и не появляется вновь, а только переходит из одной формы в другую в строго эквивалентных количествах. Это иесть современная формулировка первого начала термодинамики.

Первое начало термодинамики устанавливает связь между количеством энергии, полученной или выделенной системой в каком-либо процессе в виде теплоты Q, количеством произведенной или полученной работы W и изменением внутренней энергии системы DU:

DU = W ± Q,

Внутренняя энергия (U) является полной энергией системы и представляет собой сумму потенциальной и кинетической энергий всех составляющих частей системы (молекул, атомов, ионов и пр.) за исключением потенциальной и кинетической энергии самой системы, как материального тела. Данное уравнение является математическим выражением первого начала термодинамики.

Если процесс изохорный, т.е. если он совершается при постоянном объеме (V = const), то работа не совершается, поскольку при V = const, DV = 0 и, следовательно:

W = -P DV = 0

Знак минус в этом уравнении указывает на то, что система работает против сил внешней среды. В этом случае:

DU = Qn ,

где Qv - количество энергии (Дж/моль или кал/моль), выделенной или поглощенной системой в виде теплоты в ходе процесса при постоянном объеме. Теплота процесса равна изменению внутренней энергии системы и зависит только от конечного и начального состояния системы, т.е.

U2 – U1 = DU = Qn

В реальной жизни часто встречаются изобарные процессы, протекающие при постоянном давлении (Р = const), например, химические реакции, идущие при атмосферном давлении. Изменение внутренней энергии систе­мы в этом случае будет равно

DU = U2 – U1 = W + Qp

где Qp - количество энергии (Дж/моль или кал/моль), выделенной или поглощенной системой в виде теплоты в ходе процесса при постоянном давлении. Поскольку в ходе процессов, идущих при Р = const объем системы изменяется, то работа в таких процессах будет равна величине

W = -P (V2 - V1)

Отсюда:

U2 – U1 = Qp – P(V2 - V1).

В результате тепловой эффект процесса, протекающего при Р = const будет равен Qp = U2 – U1 + P× (V2 - V1)

Qp = (U2 + P×V2) – (U1 + P×V1).

Величина (U + P×V) обозначается буквой Н и называется энтальпией. Энтальпия, также как внутренняя энергия, является функцией состояния, т.е. изменение энтальпии (DН = H2 – Н1) при переходе системы из состоя­ния 1 в состояние 2 при постоянном давлении не зависит от пути пере­хода, а зависит только от величин энтальпии в конечном (2) и началь­ном (1) состояниях. Таким образом, тепловой эффект процесса, идущего при постоянном давлении будет равен:

Qp = H2 – Н1 = DН

Следует отметить, что физико-химический смысл функций “внутренняя энергия” и “энтальпия” одинаков. Термин “внутренняя энергия” используется для энергетической характеристики процессов, идущих при V = const, а “энтальпия” – для процессов, идущих при P = const. При этом для конденсированных систем DН = DU, для газов DН ≠ DU.

Первое начало термодинамики дает только энергетическую оценку процессов, протекающих при постоянном объеме или постоянном давлении, но не дает никаких указаний о направлении процесса и предела, до которого изучаемый процесс может идти самопроизвольно. На эти вопросы отвечает второе начало термодинамики посредством новой термодинамической функции, которая называется энтропия и обоз­начается буквой S.

Наблюдения и опыт показывают, что процессы, происходящие в природе, идут в определенном направлении. Жидкость течет от высокого уровня к низкому, вещество диффундирует из области большей концентрации к меньшей, теплота переходит от тела с более высокой температурой к телу с менее высокой и т.д. Все эти процессы происходят самопроизвольно. Второе начало термодинамики гласит:

Каждая материальная система сама по себе стремится к состоянию термодинамического равновесия.

Таким образом, второй закон термодинамики ограничивает превращение энергии в материальной системе. Клаузиус, подобно Ломоносову, так формулирует второе начало термодинамики: теплота не может сама собой перейти от тела менее нагретому к телу более нагретому.

В современной трактовке второе начало термодинамики звучит таким образом:

Энергия самопроизвольно перемещается от системы с более высоким потенциалом к системе с более низким потенциалом энергии того же вида, до тех пор, пока не наступит термодинамическое равновесие.

Изменение энтропии равно тепловому эффекту про­цесса, деленному на абсолютную температуру, при которой он происхо­дит, и измеряется в . Для обратимых изотермических превращений изменение энтропии равно

∆ S = ,

где Qобр – часть общего количества энергии, выделенной системой в виде тепла. Таким образом, если DS = 0, то процесс обратимый. Данное уравнение является математическим выражением второго начала термодинамики для обратимых процессов, происходящих в изолированной системе.

Для необратимых химических процессов, протекающих в изолированной системе, второе начало термодинамики имеет следующий вид:

∆ S >

Таким образом, если в изолированной системе протекает самопроизвольный (необратимый) процесс, то DS > 0.

Процессы, для которых

∆ S <

самопроизвольно осуществляться в изолированной системе при постоянной температуре не будут. Энтропия как критерий направленности самопроизвольных (необратимых) процессов может быть использована только для характеристики процессов в изолированных системах.

Физический смысл энтропии сводится к характеристике меры хаоса (беспорядка) в системе. Чем больше изменение энтропии в системе, тем меньше полезной работы может совершить данная система.

Изолированная система является идеальным случаем, т.е. такая система не взаимодействует с окружающей средой ни путем обмена энергией, ни путем обмена веществом. Реальные термодинамические системы являются либо закрытыми (могут обмениваться с окружающей средой энергией), либо открытыми (могут обмениваться с окружающей средой и энергией, и веществом). Для указания на направленность самопроизвольного процесса в таких системах используется другая термодинамическая функция - свободная энергия Гиббса (G).

Термодинамическая функция G = H - T×S называется свободной энергией Гиббса, или изобарно-изотермическим потенциалом, или полезной работой. Используется для характеристики системы с точки зрения совершения полезной работы, а также для указания на направленность самопроизвольных процессов, идущих при Р = const и Т = const. В случае самопроизвольных (необратимых) процессов DG < 0, Если в ре­зультате процесса DG увеличивается (DG > 0), то такой процесс идет самопроизвольно в обратном направлении. В обратимых процессах в момент достижения равновесия DG = 0.

Термохимия - это раздел термодинамики, в котором изучаются химические реакции с точки зрения их тепловых эффектов. Рассмотрим закрытую термодинамическую систему, в которой происходит химическая реакция

аА + вВ = сС + dD.

В начальном состоянии такая система имеет запас внутренней энергии U1, (а) молей реагента А и (в) молей реагента В. В конечном состоянии, т.е. после прохождения реакции, система будет иметь запас внутренней энергии U2, (с) молей продукта С и (d) молей продукте D. Тепловым эффектом реакции будет называться количество энергии, которая выделяется либо поглощается в форме тепла при взаимодейст­вии реагентов А и В с образованием продуктов С и D с учетом стехиометрических коэффициентов реакции. В зависимости от условий, в которых будет протекать химическая реакция (либо V = const, либо Р = сonst), тепловым эффектом реакции будет либо Qv = DU, либо Qp = DН.

Чтобы сравнить между собой тепловые эффекты разных реакций, необходимо указать точные условия, при которых они протекают. В термодинамике и термохимии за стандартные условия приняты Р = 1 атм и

Т = 298ºК, при этом вещество в этих условиях должно находиться в наиболее устойчивом агрегатном состоянии. Для реакций, проходящих в стандартных условиях, изменение энтальпии обозначается символом DН0298K.

Для реакций, протекающих в газовой фазе, было установлено соотношение между Qp и Qn:

Qp = Qv + Dn×RT.

Это соотношение устанавливает связь между теплотой реакции при постоянном давлении (Qp или DН) и теплотой реакции при постоянном объеме (Qv или DU), является следствием из закона Джоуля. В данном уравнении Dn - разность между числом молей образовавшихся газообразных продуктов и числом молей газообразных реагентов, т.е. Dn = nгазовых продуктов – nгазовых реагентов. Для реакций в конденсированных фазах (твердых и жидких), объем которых в ходе реакции практически не изменяется, т.е. Dn = 0, DН практи­чески не отличается от DU. В этих случаях справедливы равенства

Qp = Qv и DH = DU

Реакции, в результате которых вещество получается из элементов, называются реакциями образования. Изменение энтальпии в ходе таких реакций называется энтальпией образования данного соединения. Не все реакции образования можно реализовать практически. Например, реакция

2С + 3H2 + 1/2O2 = C2H5OH

теоретически является реакцией образования, но практически самопро­извольно не идет. Реакция

С + О2 = СО2

тоже является реакцией образования, но в отличие от первой, она достаточно легко может быть проведена практически.

Стандартной энтальпией образования химического соединения называется изменение энтальпии в ходе реакции образования 1 моль данного соединения из элементов в стандартных условиях и обозначается сим­волом .

В ходе реакций образования тепловой эффект представляет собой именно стандартную энтальпию образования соединений, потому что стандартная энтальпия образования самих элементов принята рав­ной нулю ( (элементов) = 0).

Знание стандартных энтальпий образования позволяет рассчитать тепловой эффект любой химической реакции (Qp = DH) не прибегая к экспериментальным измерениям. Из элементов можно: 1) получить непо­средственно продукты. Соответствующее изменение энтальпии этой реакции будет равно (продуктов). Из элементов можно: 2) получить реагенты. Эта реакция сопровождается изменением энтальпии (реагентов). И, наконец, 3) из реагентов можно получить продукты. Изменение энтальпии в ходе этой реакции будет равно DН. Если эти три процесса проходили в стандартных условиях, то термоди­намический баланс этих реакций будет равен:

0298K = å 298К (продукты) - å 298К (реагенты)

Таким образом, стандартная энтальпия химической реакции равна разности сумм стандартных энтальпий образования всех продуктов и всех реаген­тов. Так записывается математически закон Гесса.

Если из данных исходных реагентов можно различными путями полу­чить одни и те же конечные продукты, то, независимо от путей получе­ния продуктов, т.е. от вида и количества промежуточных реакций, суммарный тепловой эффект для всех путей будет одним и тем же. Иначе говоря, тепловой эффект химической реакции не зависит от пути перехода "реагенты - продукты", т.е. от промежуточных реакций, а зависит только от вида и состояния продуктов и реагентов. Это положение было постулировано русским ученым Г.И. Гессом в 1840 году и известно как закон Гесса, являющийся основ­ным законом термохимии.

Следствия из закона Гесса:

1. Закон Лавуазье-Лапласа. Тепловой эффект реакции разложения точно равен и противоположен по знаку тепловому эффекту реакции соединения.

Пример:

Са + О2 = СаО + 634,71 кДж

СаО = Са + О2 - 634,71 кДж

Qразл + (-Qсоед ) = 0.

2. Если совершаются две реакции, приводящие из различных начальных состояний к одинаковым конечным, то разница между тепловыми эффектами представляет тепловой эффект перехода из одного начального состояния в другое.

Пример:

С + О2 = СО2 + 409,20 кДж (1)

СО + ½ О2 = СО2 + 284,93 кДж (2)

Вычитая из (1) уравнение (2), можно вычислит тепловой эффект реакции сжигания углерода до окиси углерода:

С + ½ О2 = СО + 124,27 кДж

Таким образом, можно определять тепловые эффекты таких реакций, которые или нереализуемы, или не могут быть проведены чисто и до конца.

3. Если совершаются две реакции, приводящие из одинаковых начальных состояний к различным конечным, то разница между тепловыми эффектами представляет тепловой эффект перехода из одного конечного состояния в другое.

Пример:

Суг + О2 = СО2 + 409,20 кДж

Сгр + О2 = СО2 + 393,51 кДж

Таким образом, можно рассчитать тепловой эффект перехода от угля к графиту, который будет равен 409,00 – 393,51=15,69 кДж/моль.





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 633 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2551 - | 2213 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.