Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Практический блок. Экономическая модель




Пример

Экономическая модель

 
       
       
       
       
       

– это наличие товара у поставщика и ;

– это наличие потребностей у потребителя и ;

– это удельные затраты на перевозку товара от каждого -го поставщика, каждому -ому потребителю.

Математическая модель.

Определим неизвестные. За примем количество перевозимой продукции от каждого -го поставщика, каждому -ому потребителю.

– вывезти товара, не менее, чем есть;

– привезти не менее запросов потребителя.

; и

Получили, что суммарный спрос равен суммарному предложению, значит данная транспортная задача является закрытого типа.

Получение начального (опорного) плана методом северо-западного угла

               
       
               
       
               
       
               
       
               
       

Поверим по формуле, получился ли вырожденный случай:

; (невырожденный случай).

Определим начальные (опорные) издержки:

;

Итерации по улучшению плана до получения оптимального решения.

Рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; ; ;

Минимальная оценка в клетке (1,3). Сделаем перепоставку по контуру (23 из клетки 3,3 в клетку 1,3) и получим новый план поставки товара.

План после первой итерации

               
       
               
       
               
       
               
       
               
       

.

Снова рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; .

Минимальная оценка в клетке (5,1). Сделаем перепоставку по контуру – это будет число 31 из клетки (1,1). Рассчитаем новый план поставки товара.

План после второй итерации

               
       
               
       
               
       
               
       
               
       

.

Снова рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; ; .

Выбираем клетку (2,4). Сделаем перепоставку по контуру – это будет число 38 из клетки (2,1). Рассчитаем новый план поставки товара.

План после третьей итерации

               
       
               
       
               
       
               
       
               
       

.

Снова рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; ; .

Выбираем клетку (3,3). Сделаем перепоставку по контуру – это будет число 15 из клетки (5,3). Рассчитаем новый план поставки товара.

План после четвертой итерации

               
       
               
       
               
       
               
       
               
       

.

Снова рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; ; ;

Выбираем клетку (3,4). Сделаем перепоставку по контуру – это будет число 12 из клетки (5,4). Рассчитаем новый план поставки товара.

План после пятой итерации

               
       
               
       
               
       
               
       
               
       

.

Снова рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; ; .

Выбираем клетку (4,1). Сделаем перепоставку по контуру – это будет число 4 из клетки (3,1). Рассчитаем новый план поставки товара.

План после шестой итерации (оптимальный план перевозок)

               
       
               
       
               
       
               
       
               
       

.

Снова рассчитаем оценки пустых клеток:

; ; ;

; ; ;

; ; ;

; ; .

Как видно из расчетов все оценки положительные, т.е. не уменьшают издержки. Выбран оптимальный план перевозок .

Контрольные вопросы

1. Транспортная задача: постановка.

2. Транспортная задача: экономическая значимость.

3. Транспортная задача: условия существования решения.

4. Отличие транспортной задачи от общей задачи линейного программирования.

5. Как найти начальное решение транспортной задачи методом северо-западного угла?

6. Как решается транспортная задача методом минимальной стоимости?

7. Как решается транспортная задача методом потенциалов?

8. Построение замкнутого контура (цикла) при решении транспортной задачи.

9. Открытая и закрытая транспортная задача.

10. Приведение открытой транспортной задачи к закрытому типу.

 

Тесты

1. Что требуется определить в транспортной задаче?

а) такой план перевозок, чтобы все заявки не были выполнены, а общая стоимость всех перевозок была бы минимальна;

б) такой план перевозок, чтобы все заявки были выполнены, а общая стоимость всех перевозок была бы минимальна;

в) такой план перевозок, чтобы все заявки были выполнены, а общая стоимость всех перевозок была бы максимальна;

г) такой план перевозок, чтобы все заявки были не выполнены, а общая стоимость всех перевозок была бы максимальна;

д) содержание п. а и г.

2. Транспортные задачи являются одним из видов задач:

а) линейного программирования;

б) нелинейной оптимизации;

в) динамического программирования;

г) теории игр.

3. Система ограничений в транспортной задаче включает в себя:

а) уравнения баланса по поставщикам;

б) уравнения баланса по потребителям;

в) суммарное время перевозок;

г) п.п. а, б;

д) п.п. а-в.

4. Целевой функцией в транспортной задаче является:

а) суммарные транспортные издержки;

б) суммарное время перевозок;

в) длина маршрута перевозок.

5. Оценка пустой клетки показывает:

а) на сколько изменится значение целевой функции, после совершения единичной поставки в рассматриваемую клетку;

б) максимально возможную поставку в рассматриваемую клетку;

в) стоимость перевозки единицы товара.

6. Как решается транспортная задача:

а) методом потенциалов;

б) методом обратной матрицы;

в) методом «северо-западного угла».

7. Транспортная задача может быть

а) замкнутая;

б) закрытая;

в) обособленная.

 

8. Для нахождения опорного плана транспортной задачи применяется

а) метод скользящей средней;

б) метод потенциалов;

в) метод «северо-западного угла».

9. Сколько занятых клеток в транспортной таблице соответствует опорному плану перевозок:

а) n+m; б) n+m – 1; в) n+m+1.

10. Всегда ли для пустой клетки транспортной таблицы существует контур перепоставки?

а) да;

б) нет;

в) при соблюдении определенных условий.

 

Ответы к тестам

1) б 6) а
2) а 7) б
3) г 8) в
4) а 9) б
5) а 10) а




Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 579 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2160 - | 2048 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.