Лекции.Орг

Поиск:


Устал с поисками информации? Мы тебе поможем!

Пример. ненормализованное нормализованное




ненормализованное нормализованное

число число

 

Для представления чисел в машинном слове выделяют группы разрядов для изображения мантиссы, порядка, знака числа и знака порядка:

а) представление чисел в формате полуслова

 

                             

Знак Знак Порядок p Мантисса m

(4 разряда) (10 разрядов)

б) представление чисел в формате слова  
         
                    . . .  

Знак Знак Порядок p Мантисса m

(7 разрядов) (23 разряда)

Наиболее типично представление ЧПТ в формате слова (32 разряда).

Пример.

а) Число А записывается в ячейку следующим образом:

 

     
. . .
                                   
Знак Знак Порядок p Мантисса m (7 разрядов) (23 разряда)

 

б)Число А

 

 
. . .
                                 
Знак Знак Порядок p Мантисса m (7 разрядов) (23 разряда)

 

 

Максимальным числом представимым в формате слова будет

А

.

 
. . .
                                 
Зн Зн Порядок p Мантисса m

 

 
. . .
                                 
Зн Зн Порядок p Мантисса m

Минимальным числом из возможно представимых в формате слова будет А

 

 

Минимальным по модулю, отличным от нуля и нормализованным будет А .

 
. . .
                                 
Зн Зн p Порядок p Мантисса m

 

         
      . . .       . . .         . . .  
Знак Знак Порядок p Мантисса m (10 разрядов) (52 разряда)

Таким образом, числа с плавающей точкой позволяют увеличить диапазон обрабатываемых чисел, но при этом точность изображения чисел определяется только разрядами мантиссы и уменьшается по сравнению с числами с фиксированной точкой. При записи числа в формате слова диапазон представимых чисел будет от до , а точность определяться мантиссой, состоящей из 23 разрядов. Точность может быть повышена путем увеличения количества разрядов мантиссы. Это реализуется путем представления чисел с так называемой двойной точностью (используется формат двойного слова):

Литература.

1. Пономарев В.С., Красников В.В. Методические указания по курсу "Организация и функционирование ЭВМ и систем". Ч. 1. Арифметические основы ЭВМ. ДГТУ, 1996.

2. Каган Б.М. Электронные вычислительные машины и системы. М.: Энергоатомиздат, 1991.

3. Савельев А.Я. Прикладная теория цифровых автоматов. М.: Высшая школа, 1983.

4. Лю Ю-Чжен, Гибсон Г. Микропроцессоры семейства 8086/8088. М.: Радио и связь

 

 


* Здесь и в дальнейшем при одновременном использовании нескольких различных систем счисления основание системы к которой относится число будем указывать в виде нижнего индекса.

* Знаковым разрядом обычно является крайний разряд в разрядной сетке. В дальнейшем при записи кода знаковый разряд от цифровых условимся отделять запятой. Если количество разрядов кода не указано будем предполагать, что под запись кода выделен один байт.








Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 319 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Поиск на сайте:

Рекомендуемый контект:





© 2015-2021 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.