Третья группа аксиом - аксиомы скалярного произведения
Лекции.Орг

Поиск:


Третья группа аксиом - аксиомы скалярного произведения




BIII1. Для любых чисел l, mÎR, и любых векторов справедливо равенство .

BIII2. Для любых векторов справедливо равенство .

BIII3. Для любого ненулевого вектора имеет место .

Из аксиом ВIII1 – ВIII3 следует, что скалярное произведение представляет собой положительно определенную симметрическую билинейную форму на V3. Будем также предполагать, что:

BIII4. На пространстве V3 задано множество положительно определенных симметрических билинейных форм, которое включает в себя скалярное произведение векторов, такое, что если , то , где l положительное действительной число.

Другими словами, на V3 задано множество положительно определенных симметрических билинейных форм, пропорциональных скалярному произведению векторов с точностью до положительного числового сомножителя.





Дата добавления: 2015-09-20; просмотров: 376 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.