T
M [X (t)]= lim 1/T ò xk (t) dt. (3)
T® ¥ 0
В общем случае результаты усреднения по совокупности (1) и по времени (2) неодинаковы. Предел выборочного среднего по совокупности (1) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от текущего времени. Предел выборочного среднего по времени (2) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от номера реализации.
Наличие и отсутствие зависимости вероятностных характеристик от времени или от номера реализации определяет такие фундаментальные свойства процесса, как стационарность и эргодичность. Стационарным, называется процесс, вероятностные характеристики которого не зависят от времени; соответственно эргодическим называется процесс, вероятностные характеристики которого не зависят от номера реализации.
Следовательно, стационарный неэргодический случайный процесс — это такой процесс, у которого эквивалентны временные сечения (вероятностные характеристики не зависят от текущего времени), но не эквивалентны реализации (вероятностные характеристики зависят от номера реализации). Нестационарный эргодический процесс — это процесс, у которого эквивалентны реализации (вероятностные характеристики не зависят от номера реализации), но не эквивалентны временные сечения (вероятностные характеристики зависят от текущего времени). Классифицируя случайные процессы на основе этих признаков (стационарность и эргодичность), получаем следующие четыре класса процессов: стационарные эргодические, стационарные неэргодические, нестационарные эргодические, нестационарные неэргодические.
Учет и использование описанных свойств случайных процессов играет большую роль при планировании экспериментапоопределению их вероятностных характеристик.
Поскольку измерение представляет собой процедуру нахождения величины опытным путем с помощью специальных технических средств, реализующих алгоритм, включающий в себя операцию сравнения с известной величиной, в статических измерениях должна применяться мера, воспроизводящая известную величину.
Типовые алгоритмы измерений вероятностных характеристик случайных процессов, различающиеся способом применения меры в процессе измерений, представляются в следующем виде:
q* [X (t)]= KS d g [X (t)]; (4)
q* [X (t)]= S d Kg [X (t)]; (5)
q* [X (t)]= S d gK [X (t)]; (6)
где S d— оператор усреднения; К— оператор сравнения;
q* [X (t)]—результат измерения характеристики q [X (t)].
Данные алгоритмы различаются порядком выполнения операций. Операция сравнения с образцовой мерой (К) может быть заключительной [см. (4)], выполняться после реализации оператора g, но до усреднения [см.(5)] и, наконец, быть начальной [см. (6)]. Соответствующие обобщенные структурные схемы средств измерений значений вероятностных характеристик представлены на рис. 2.
На этих рисунках для обозначения блоков, реализующих операторы, входящие в выражения (4) — (6), используются те же обозначения. Так, g — устройство, выполняющее преобразование, лежащее в основе определения вероятностной характеристики q; S d — устройство усреднения (сумматор или интегратор); К— компаратор (сравнивающее устройство), а М— мера, с помощью которой формируется известная величина (q., g., x.)
Представленное на рис. 2, а средство измерений реализует следующую процедуру: на вход поступает совокупность реализаций { xi (t) } (при использовании усреднения по времени — одна реализация xi, (t) -, на выходе узла g имеем совокупность преобразованных реализации {g[ xi (t)]}; после усреднения получаем величину S d {g[ xi (t)]}, которая поступает на компаратор, осуществляющий сравнение с известной величиной qо, в результате чего получаем значение измеряемой вероятностной характеристики q*[ X(t)].
Отличие процедуры, реализуемой средством измерений, представленным на рис. 2, б, заключается в том, что после формирования совокупности {g [ xi (t)]} она поступает не на усреднитель, а на компаратор, который выполняет сравнение с известной величиной go; на выходе компаратора формируется числовой массив {g* [ xi (ti) ]} и усреднение выполняется в числовой форме. На выходе усреднителя S d имеем результат измерения q* [ X (t)].
Средство измерений (рис. 2, в) основано на формировании массива числовых эквивалентов мгновенных значений реализации случайного процесса Х (t), после чего преобразование g и усреднение выполняются в числовой форме. Это устройство эквивалентно последовательному соединению аналого-цифрового преобразователя (АЦП) и вычислительного устройства (процессора). На выходе АЦП формируется массив мгновенных значений, а процессор по определенной программе обеспечивает реализацию операторов g и S d,
Погрешность результата измерения вероятностной характеристики случайного процесса
Dq* [ X (t)]= q*[ X (t)] - q [ X (t)]. (7)
Для статистических измерений характерно обязательное наличие составляющей методической погрешности, обусловленной конечностью объема выборочных данных о мгновенных значениях реализации случайного процесса, ибо при проведении физического эксперимента принципиально не может быть использован бесконечный ансамбль реализации или бесконечный временной интервал. Соотношение (7) определяет результирующую погрешность, включающую в себя как методическую, так и инструментальную составляющие. В дальнейшем будут приводиться соотношения только для определения специфической для статистических измерений методической погрешности, обусловленной конечностью числа реализации и временного интервала.