Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Суммирование погрешностей




Задача суммирования погрешностей заключается в определении расчетным путем оценки результирующей погрешности по оценкам ее составляющих. Если погрешность результата полностью определяется только СИП в виде предельной погрешности СИ, то задачи решается простым суммированием этих погрешностей. Однако, на практике организовать такие измерения практически невозможно. В результатах измерений практически всегда присутствует как СИП так и СЛ, отдельные составляющие погрешности также могут иметь корреляционные связи между собой. Коррелированными являются такие погрешности, которые вызваны одной общей причиной (изменение температуры, влажности, напряжения в сети, магнитными полями, вибрациями и т.д.).

Суммирование СЛ. Суммирование СЛП, как случайной величины производится в зависимости от степени взаимосвязи составляющих случайной суммарной погрешности. Если взаимосвязь между ними отсутствует, (коэффициент корреляции r = 0), то используется геометрическое суммирование:

эта формула обычно дает заниженное значение суммарной погрешности.

Если корреляционная связь между присутствует, коэффициент считается приближенно =1 (коэффициент корреляции r» ±1), то используется арифметическое суммирование: эта формула обычно дает завышенное значение суммарной погрешности.

Действительное значение коэффициента корреляции по модулю находится в пределах от 0 до 1. Следовательно действительное значение находится между геометрическим и арифметическим суммированием.

При суммировании составляющих с нормальным законом распределения доверительный интервал может быть найден по формулам:

где Si – оценка СКО i -й составляющей погрешности, m - число суммируемых составляющих погрешности. Знак + следует использовать при расчете составляющих с положительной корреляцией, а - с отрицательной.

При использовании коэффициент Стьюдента при расчете доверительного интервала на уровне доверительной вероятности 0,9 - 0,95 приближенно равен 2.

Суммирование СИП. При определение границ СИП арифметическое их суммирование приводит к существенному завышению результатов, так как формула предполагает проявление этих погрешностей с их максимальным значением что на практике маловероятно. Учитывая, что СИП в какой-то степени определяются случайными причинами, в расчетах используется поправочный коэффициент, зависящий от доверительной вероятности и числа суммируемых составляющих m. qi – граница i - ой составляющей СП.

k = 0,95 - 1,4

При большом числе слагаемых (> 5) доверительный интервал определяется по формуле:

Суммирование СИП и СЛ. По ГОСТ 8.207 - 76 погрешность результата измерения определяется по следующим правилам:

1. Если оценка СКО результата измерения связана с неисключенной составляющей СИП соотношением: q < 0,8 , то СИП можно пренебречь и учитывать только СЛ.

2. Если имеет место неравенство: q < 0,8 , то следует пренебречь СЛ, и учитывать только СИП.

Из 1 и 2 следует, что имеет место интервал 0,8 ¸ 8. При невыполнении указанных неравенств границы погрешности результата измерения следует находить по формулам:

;





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 997 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2446 - | 2243 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.