Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Синхронизация с оперативной памятью




 


 

 

31. АЛУ ядра процессора (структурная схема-это уже сами, принцип работы).

Арифметико-логическое устройство (АЛУ)- блок процессора, который под управлением устройства управления (УУ) служит для выполнения арифметических и логических преобразований (начиная от элементарных) над данными, называемыми в этом случае операндами. Разрядность операндов обычно называют размером машинного слова.

32. Система и формат команд ядра процессора. Систем команд: RISC и CISC. Группа команд: 1). Работа с памятью; 2). Обработка данных. Itanium и Alpha DEC- процессоры для малых ЭВМ. CISC- характеризуется многообразием форматов. Формат команды: Команды: 1). По функциональному назначению- передача данных- обработка данных- передача управления- дополнительные; 2). Количество адресов- Безадресный- 1 адресные- 2 адресные- 3 адресные.

33. Классификация команд ядра процессора. Команды: 1). По способу кодирования- 1 байтовые и 2 байтовые; 2). По длине команд- 1-2 байтовые и многобайтовые; 3).по способу адресации: регистр-решение, регистр-память, память-память. Также команды бывают общего назначения и взаимодействующие с памятью. Расширенная система команд: 1. NMX- обработка аудио и видео; 2. SSEx1- обработка вещественных чисел, SSEx2- обработка вещественных чисел с двойной точностью, SSEx3- команды для оптических работ с регистрами, SSEx4- работа с видеопотоками для обработки двухбайтных символов команды векторной обработки данных.

34. Память ЭВМ (назначение, логическая и физическая организация). Память ЭВМ-часть электронной вычислительной машины, предназначенная для приема, хранения и выдачи информации (данных), образуется из одного или нескольких запоминающих устройств (ЗУ). К основным способам логической организации памяти относятся адресная, ассоциативная и стековая организации. В случае адресной организации размещение и поиск информации в ЗМ основаны на использовании адреса хранения слова - номера ячейки ЗМ. Ассоциативная. Поиск производится не по адресу ячейки, а по ее содержимому (по ассоциативному признаку). Поиск при этом производится параллельно во всех ячейках ЗМ. Менее универсальная(гибкая) организация, но за счет совмещения операций выборки из памяти с логическими операциями можно ускорить обработку данных (например в базах данных). Стековая. Как и ассоциативная - безадресная стековая память - одномерный массив ячеек. Запись/выборка производится по дисциплине “последний пришел - первым обслужен” (LIFO). Основная оперативная память вычислительной машины обычно является адресной. Это значит, что каждой хранимой в памяти единице информации (слову, байту) ставится в соответствие специальное число - адрес, определяющий место ее хранения в памяти. Физическая организация памяти ЭВМ:

35. Статическая память ЭВМ (структурная схема и принцип работы). Статическая память - SRAM (Static Random Access Memory), как и следует из ее названия, способна хранить информацию в статическом режиме - то есть сколь угодно долго при отсутствии обращений (но при наличии питающего напряжения). Ячейки статической памяти реализуются на триггерах - элементах с двумя устойчивыми состояниями. По сравнению с динамической памятью эти ячейки более сложны и занимают больше места в кристалле, однако они проще в управлении и не требуют регенерации. Быстродействие и энергопотребление статической памяти определяется технологией изготовления и схемотехникой запоминающих ячеек.

Достоинства:

• высокая скорость работы;

• нет необходимости регенерации ячеек.

Недостатки:

• высокая цена;

• низкая плотность упаковки;

• небольшой объем;

• высокое энергопотребление.

В связи с перечисленными выше достоинствами и недостатками, область применения статической памяти ограничивается, в основном, использованием ее в качестве КЭШ-памяти, что позволяет при небольшом увеличении стоимости уменьшить влияние недостатков динамической памяти на производительность ЭВМ. Однако, это все лишь компромисс, позволяющий несколько сгладить разрыв в производительности процессора и памяти, и все вытекающие отсюда последствия.

Требуется кардинальное решение проблемы существующей с момента зарождения вычислительной техники. Существует множество экспериментальных разработок, позволяющих получить быструю и дешевую оперативную память, но многие из них пока существуют только в виде лабораторных образцов, многие имеют недостаточную надежность и так далее. Наиболее перспективный путь развития оперативной памяти – это использование магниторезистивной памяти, получающей все большее распространение.

36-37. Триггер И-НЕ и Триггер ИЛИ-НЕ. Триггер – это электронное устройство, которое предназначается для записи и хранения информации. Обычно он имеет два выхода: прямой и инверсный; и некоторое количество входов, в зависимости от выполняемой задачи. Под действием входных сигналов, изменяется состояние выходов. Напряжение на выходах изменяется резко – скачкообразно. Для изготовления триггеров обычно используются биполярные, униполярные транзисторы (полупроводниковые приборы). Триггер И-НЕ:

 

Триггер ИЛИ-НЕ

 

38. Динамическая память ЭВМ. Динамическая память - это оперативная память ЭВМ, предоставляемая Турбо-Паскалевой программе при её работе, за вычетом сегмента данных (64 К), стека (обычно 16 К) и собственно тела программы. По умолчанию размер динамической памяти определяется всей доступной памятью ЭВМ и, как правило, составляет не менее 200 - 300 Кбайт.


Динамическую память обычно используют при:
1. обработке больших массивов данных;
2. разработке САПР;
3. временном запоминании данных при работе с графическими и звуковыми средствами
ЭВМ. Типы динамической памяти: FTM (Fast Page Mode) – режим быстрого страничного обмена. Преимущество данного режима заключается в экономии времени за счет исключения фазы выдачи адреса строки из циклов, следующих за первым, что позволяет повысить производительность памяти. EDO (Extended Data Out) DRAM. Эта память содержит регистр-защелку выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении. Регистр прозрачен при низком уровне сигнала CAS#, а по его подъему фиксирует текущее значение выходных данных до следующего его спада. Отличие этого режима от стандартного заключается в подъеме импульса CAS# до появления действительных данных на выходе микросхемы. Считывание выходных данных может производится внешними схемами вплоть до спада следующего импульса CAS#, что позволяет экономит время за счет сокращения длительности импульса CAS#. BEDO (Burst EDO) DRAM. В микросхемах данного типа кроме регистра-защелки выходных данных, содержится еще и внутренний счетчик адреса колонок для пакетного цикла, а во 2-й, 3-й и 4-й передачах импульсы CAS# только запрашивают очередные данные. В результате удлинения конвейера выходные данные отстают на один такт CAS#, зато следующие данные появляются без тактов ожидания процессора. SDRAM (Synchronous DRAM) – быстродействующая синхронная динамическая память, работающая на частоте системной шины без тактов ожидания внутри пакетного цикла. От обычной динамической памяти, у которой все внутренние процессы инициируются только сигналами RAS#, CAS# и WE#, память SDRAM отличается использованием постоянного присутствующего сигнала тактовой частоты системной шины. Это позволяет создавать внутри микросхемы высокопроизводительный конвейер на основе ячеек динамической памяти с обычным временем доступа (50-70нс). Микросхемы SDRAM являются устройствами с программируемыми параметрами, со своим набором команд и внутренней организацией чередования банков.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1089 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2309 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.