Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Нормальному распределению




Чтобы установить, что результаты измерений принадлежат (или не принадлежат) тому или иному распределению, необходимо сравнить экспериментальную функцию распределения с предполагаемой теоретической. Сравнение осуществляется с помощью критериев согласия.

В случае проверки принадлежности результатов измерений к нормальному распределению при числе результатов n > 50 предпочтительным является один из критериев: Пирсона χ2 или Мизеса – Смирнова ω2. В работе используется критерий Пирсона.

При числе результатов измерений 15 < n < 50 производят приближенную проверку их принадлежности к нормальному распределению путем оценки коэффициента асимметрии и эксцесса.

При n < 15 гипотеза о принадлежности результатов измерений к какому-либо распределению не проверяется. Если при этом имеется априорная информация о том, что нет причин, которые могли бы вызвать заметное отклонение распределения результатов от нормального закона, для обработки результатов измерений используется распределение Стьюдента.

Для проверки принадлежности результатов измерений к нормальному распределению с помощью критерия согласия Пирсона необходимо сначала построить гистограмму.

Построение гистограммы включает в себя следующие этапы.

1. Исправленные результаты измерений располагаются в порядке возрастания: x 1, x 2,..., xn, где xi < xi +1.

2. Вычисляется диапазон изменения значений результатов измерений:

Rn = xnx 1.

3. Этот диапазон разбивается на r одинаковых интервалов (оценить необходимое количество интервалов можно по правилу: r =1+3,32 lg n с последующим округлением в большую сторону до ближайшего целого нечетного числа). Обычно r лежит в диапазоне от 7 до 15.

4. Определяется ширина интервала:

 

5. Определяются границы интервалов [ xj -1, xj ] так, чтобы верхняя граница j -го интервала xJ в = j ·Δ, а его нижняя граница совпадала с верхней границей (j – 1)-го интервала: xj н = x ( j -1)н.

6. Для каждого j -го интервала (j = 1, 2,..., r) вычисляются числа nj – частость попадания результата измерений в интервал.

7. Строится гистограмма. Для этого по оси результатов измерений в порядке возрастания номеров откладываются интервалы Δ j, и на каждом интервале строится прямоугольник, высота которого пропорциональна nj.

По результатам анализа гистограммы высказывается гипотеза о виде закона распределения экспериментальных данных и о численных характеристиках этого закона (для нормального распределения такими характеристиками являются математическое ожидание и дисперсия). После этого используют критерий согласия для проверки гипотезы.

Критерий согласия Пирсона χ2 характеризует меру отклонения результатов измерений от теоретически предсказанных и рассчитывается по формуле:

(3.4)

где nj – частость попадания результатов измерений в j -й интервал; Pj – теоретические значения вероятности попадания результатов в j -й интервал, которые вычисляются по формуле:

Pj = Ф(zj в) – Ф(z (j -1)в), (3.5)

где Ф(z) – функция Лапласа; Р 1 = Ф(z ).

Таблица значений функции Лапласа для некоторых z приведена в [1].

После вычисления значения χ2 для заданного уровня значимости ∝ и числа степеней свободы 𝜈 = rk – 1 (где r – количество разрядов разбиения; k – число параметров, необходимых для определения теоретической функции распределения, причем для нормального распределения k = 2), по таблицам χ2 – распределения находят критическое значение критерия согласия χ2кр. В технической практике обычно задаются уровнем значимости α = 0,05. Значения χ2кр для этого уровня значимости приведены в [1].

Если χ2 < χ2кр принимают гипотезу о том, что результаты измерений принадлежат нормальному распределению, характеризующемуся математическим ожиданием и дисперсией, оценки которых дают формулы (3.1) и (3.2). В противном случае (χ2 ≥ χ2кр) гипотеза отвергается.





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 833 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2257 - | 2143 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.