Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие состояния системы




Процесс (лат. processus – продвижение) – последовательная смена во времени явлений, событий, состояний, либо множество последовательных действий, направленных на достижение какого – либо конечного результата (цели).

Переменные (координаты) процесса – это наиболее существенные параметры, характеризующие состояние процесса и изменяющие свои значения во времени: { xi(t) } = X(t).

Состояние процесса в момент времени tk - это множество значений переменных в этот момент времени: {xi(tk)}, где tk ∈T, T – множество моментов времени

В каждый момент времени t∈T система S получает некоторое множество входных воздействий U(t) и порождает некоторую выходную величину Y(t). В общем случае значение выходной величины системы зависит как от текущего значения входного воздействия, так и от предыстории этого воздействия. (Например, система в момент воздействия была или в состоянии покоя, или же находилась в движении из–за действия предыдущих входных величин). Чтобы не различать эти два случая, лучше говорить, что текущее значение выходной величины y(t) системы S зависит от состояния системы. Состояние системы описывается системой уравнений

Состояние системы – это есть некоторая (внутренняя) характеристика системы {xi}, значение которой в настоящий момент времени определяет текущее значение выходной величины {Yj} и оказывает влияние на её будущее.

T x X → Y.

При этом знание состояния x(t₁) и отрезка входных воздействий ω=ω(t₁,t₂) должно быть необходимым и достаточным условием, позволяющим определить состояние x(t₂) = ϕ(t₂;t₁,x(t₁),ω) каждый раз, когда t₁<t₂. При этом множество Т упорядочено, т.е. в нём определено направление. Обычно направление Т таково, что прошлое предшествует будущему и влияет на него, но не наоборот.

Пара (τ, x), где τ∈Т и x∈X называется событием /фазой/ системы.

Множество T х X – пространство событий /фазовое пространство/ системы.

Иногда фазовое пространство называется пространством состояний. Переходная функция состоянийϕ (её график в пространстве событий) называется несколькими эквивалентными терминами: движением, траекторией, орбитой, потоком, решением дифференциального уравнения, кривой решения и т.д. Говорят, что входное воздействие (или управление ω) переводит (переносит, изменяет, преобразует) состояние x(t1) /или событие (t1, x)/ в состояние x(t2) = j(t2; t1, x(t1), ω) /или в событие (t2,ϕ(t2; t1, x(t1), ω)) /. Говоря о движении системы S, имеют в виду функцию состояния ϕ.






Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1917 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2275 - | 2201 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.