Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основы алгебры логики




 

Для анализа и синтеза схем в ЭВМ при алгоритмизации и программировании решения задач широко используется математический аппарат алгебры логики.

Алгебра логики – это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1. Алгебра логики оперирует с логическими высказываниями.

Высказывание – это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности. При этом считается, что высказывание удовлетворяет закону исключенного третьего, т.е. каждое высказывание или истинно, или ложно и не может быть одновременно и истинным, и ложным.

Пример 4.11. Высказывания: "Сейчас идет снег" – это утверждение может быть истинным или ложным; "Вашингтон – столица США" – истинное утверждение; "Частное от деления 10 на 2 равно 3" – ложное утверждение.

 

В алгебре логики все высказывания обозначают буквами а, b, с и т.д. Содержание высказываний учитывается только при введении их буквенных обозначений, и в дальнейшем над ними можно производить любые действия, предусмотренные данной алгеброй. Причем если над исходными элементами алгебры выполнены некоторые разрешенные в алгебре логики операции, то результаты операций также будут элементами этой алгебры.

Простейшими операциями в алгебре логики являются операции логического сложения (иначе, операция ИЛИ, операция дизъюнкции) и логического умножения (иначе, операция И, операция конъюнкции). Для обозначения операции логического сложения используют символы + или V, а логического умножения – символы * или ö.

Правила выполнения операций в алгебре логики определяются рядом аксиом, теорем и следствий.

В частности, для алгебры логики выполняются законы:

1) сочетательный:

 

 

2) переместительный:

 

 

3) распределительный:

 

 

Справедливы соотношения:

 

Наименьшим элементом алгебры логики является 0, наибольшим элементом – 1. В алгебре логики также вводится еще одна операция – операция отрицания (иначе, операция НЕ, операция инверсии), обозначаемая чертой над элементом.

По определению:

Справедливы, например, такие соотношения:

Функция в алгебре логики – это алгебраическое выражение, содержащее элементы алгебры логики а, b, с..., связанные между собой операциями, определенными в этой алгебре.

Пример 4.12. Примеры логических функций:

 

Согласно теоремам разложения функций на конституэнты (составляющие) любая функция может быть разложена на конституэнты "1":

 

 

и т.д.

Эти соотношения используются для синтеза логических функций и вычислительных схем.





Поделиться с друзьями:


Дата добавления: 2015-01-29; Мы поможем в написании ваших работ!; просмотров: 1450 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2418 - | 2279 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.