Рассмотрим систему токов, погруженную в магнитик с проницаемостью . Выделим область V0 ограниченную поверхностью S. Энергия магнитного поля, содержащаяся в V0 равна
Пологая и применяя теорему Гаусса - Остроградского, с учетом тождества находим
(21.1)
Для ограниченной системы токов, асимптотическое поведение вектора- потенциала А при имеет вид
где m- полный магнитный момент системы.
Таким образом, при поверхностный интеграл в (21.1) исчезает и выражение для энергии магнитного поля с учетом уравнения принимает вид
где V -область занятая токами проводимости.
Поле В создается как токами проводимости, так и токами намагничения, можно записать следующее уравнение для векторного потенциала А:
Магнитное поле создается как токами проводимости так и токами намагничение и вектор удовлетворяет уравнению типа Пуассона выражения для векторного потенциала можно записать:
- область занятая токами проводимости и намагничения.
Для однородного магнетика с постоянной проницаемостью
упрощается:
Токи текут по проводникам, занимающим некоторые области В то же время из условия стационарности токов вытекает, что линии тока являются замкнутыми. Выделяя области , отвечающие полным током силой , очевидно, можно положить и переписать в виде:
где введены коэффициенты
Называемые взаимной индуктивностью при и индуктивностью при .
Для квазилинейных проводников подстановкой каждый объемный интеграл сводится к линейному:
Однако такое упрощение допустимо только при вычислении взаимной индуктивности непересекающихся квазилинейных проводников, когда .