Тригонометрические уравнения - тема не самая простая. Уж больно они разнообразные.) Например, такие:
sin2x + cos3x = ctg5x
sin(5x+π/4) = ctg(2x-π/3)
sinx + cos2x + tg3x = ctg4x
И тому подобное...
Но у этих (и всех остальных) тригонометрических монстров есть два общих и обязательных признака. Первый - вы не поверите - в уравнениях присутствуют тригонометрические функции.) Второй: все выражения с иксом находятся внутри этих самых функций. И только там! Если икс появится где-нибудь снаружи, например, sin2x + 3x = 3, это уже будет уравнение смешанного типа. Такие уравнения требуют индивидуального подхода. Здесь мы их рассматривать не будем.
Злые уравнения в этом уроке мы тоже решать не будем.) Здесь мы будем разбираться с самыми простыми тригонометрическими уравнениями. Почему? Да потому, что решение любых тригонометрических уравнений состоит из двух этапов. На первом этапе злое уравнение путём самых различных преобразований сводится к простому. На втором - решается это самое простое уравнение. Иначе - никак.
Так что, если на втором этапе у вас проблемы - первый этап особого смысла не имеет.)
Как выглядят элементарные тригонометрические уравнения?
Примеры таких уравнений:
sinx = 1/4
cosx = 0,5
tgx = √3
ctgx = 12,2
И так далее. Уловили? Слева - чистый (безо всяких коэффициентов) синус (косинус, тангенс, котангенс), справа - какое-то число. В общем виде простейшие тригонометрические уравнения можно записать вот так:
sinx = а
cosx = а
tgx = а
ctgx = а
Здесь а обозначает любое число. Любое.
Кстати, внутри функции может находиться не чистый икс, а какое-то выражение, типа:
sin(2x-3) = 0
cos(3x+π/3) = 1/2
и тому подобное. Это усложняет жизнь, но на методе решения тригонометрического уравнения никак не сказывается.
Как решать тригонометрические уравнения?
Тригонометрические уравнения можно решать двумя путями. Первый путь: с использованием логики и тригонометрического круга. Этот путь мы рассмотрим здесь. Второй путь - с использованием памяти и формул - рассмотрим в следующем уроке.
Первый путь понятен, надёжен, и его трудно забыть.) Он хорош для решения и тригонометрических уравнений, и неравенств, и всяких хитрых нестандартных примеров. Логика сильнее памяти!)
Решаем уравнения с помощью тригонометрического круга.
Включаем элементарную логику и умение пользоваться тригонометрическим кругом. Не умеете!? Однако... Трудно же вам в тригонометрии придётся...) Но не беда. Загляните в уроки "Тригонометрический круг...... Что это такое?" и "Отсчёт углов на тригонометрическом круге". Там всё просто. В отличие от учебников...)
Ах, вы в курсе!? И даже освоили "Практическую работу с тригонометрическим кругом"!? Примите поздравления. Эта тема будет вам близка и понятна.) Что особо радует, тригонометрическому кругу безразлично, какое уравнение вы решаете. Синус, косинус, тангенс, котангенс - ему всё едино. Принцип решения один.
Вот и берём любое элементарное тригонометрическое уравнение. Хотя бы это:
cosx = 0,5
Надо найти икс. Если говорить человеческим языком, нужно найти угол (икс), косинус которого равен 0,5.
Как мы ранее использовали круг? Мы рисовали на нём угол. В градусах или радианах. И сразу видели тригонометрические функции этого угла. Сейчас поступим наоборот. Нарисуем на круге косинус, равный 0,5 и сразу увидим угол. Останется только записать ответ.) Да-да!
Рисуем круг и отмечаем косинус, равный 0,5. На оси косинусов, разумеется. Вот так:
Теперь нарисуем угол, который даёт нам этот косинус. Наведите курсор мышки на рисунок (кликать не надо, ничего интересного не будет), и увидите этот самый угол х.
Косинус какого угла равен 0,5?
Если вы знаете таблицу косинусов (а вы должны её знать), можно смело записать:
х = 60°
Или, в радианах:
х = π/3
Так как:
cos 60° = cos(π/3) = 0,5
Кое-кто скептически хмыкнет, да... Мол, стоило ли круг городить, когда и так всё ясно... Можно, конечно, хмыкать...) Но дело в том, что это - ошибочный ответ. Вернее, недостаточный. Знатоки круга понимают, что здесь ещё целая куча углов, которые тоже дают косинус, равный 0,5.
Если провернуть подвижную сторону ОА на полный оборот, точка А попадёт в исходное положение. С тем же косинусом, равным 0,5. Т.е. угол изменится на 360° или 2π радиан, а косинус - нет. Новый угол 60° + 360° = 420° тоже будет решением нашего уравнения, т.к.
cos420° = 0,5
Таких полных оборотов можно накрутить бесконечное множество... И все эти новые углы будут решениями нашего тригонометрического уравнения. И их все надо как-то записать в ответ. Все. Иначе решение не считается, да...)
Математика умеет это делать просто и элегантно. В одном кратком ответе записывать бесконечное множество решений. Вот как это выглядит для нашего уравнения:
х = π/3 + 2πn, n ∈ Z
Расшифрую. Всё-таки писать осмысленно приятнее, чем тупо рисовать какие-то загадочные буковки, правда?)
π/3 - это тот самый угол, который мы увидели на круге и определили по таблице косинусов.
2π - это один полный оборот в радианах.
n - это количество полных, т.е. целых оборотов. Понятно, что n может быть равно 0, ±1, ±2, ±3.... и так далее. Что и указано краткой записью:
n ∈ Z
n принадлежит (∈) множеству целых чисел (Z). Кстати, вместо буквы n вполне могут употребляться буквы k, m, t и т.д.
Эта запись означает, что вы можете взять любое целое n. Хоть -3, хоть 0, хоть +55. Какое хотите. Если подставите это число в запись ответа, получите конкретный угол, который обязательно будет решением нашего сурового уравнения.)
Или, другими словами, х = π/3 - это единственный корень из бесконечного множества. Чтобы получить все остальные корни, достаточно к π/3 прибавить любое количество полных оборотов (n) в радианах. Т.е. 2πn радиан.
Всё? Нет. Я специально удовольствие растягиваю. Чтобы запомнилось получше.) Мы получили только часть ответов к нашему уравнению. Эту первую часть решения я запишу вот как:
х1 = π/3 + 2πn, n ∈ Z
х1 - не один корень, это целая серия корней, записанная в краткой форме.
Но есть ещё углы, которые тоже дают косинус, равный 0,5!
Вернёмся к нашей картинке, по которой записывали ответ. Вот она:
Наводим мышку на картинку и видим ещё один угол, который тоже даёт косинус 0,5. Как вы думаете, чему он равен? Треугольнички одинаковые... Да! Он равен углу х, только отложен в отрицательном направлении. Это угол -х. Но икс-то мы уже вычислили. π/3 или 60°. Стало быть, можно смело записать:
х2 = - π/3
Ну и, разумеется, добавляем все углы, которые получаются через полные обороты:
х2 = - π/3 + 2πn, n ∈ Z
Вот теперь всё.) По тригонометрическому кругу мы увидели (кто понимает, конечно)) все углы, дающие косинус, равный 0,5. И записали эти углы в краткой математической форме. В ответе получились две бесконечные серии корней:
х1 = π/3 + 2πn, n ∈ Z
х2 = - π/3 + 2πn, n ∈ Z
Это правильный ответ.
Надеюсь, общий принцип решения тригонометрических уравнений с помощью круга понятен. Отмечаем на круге косинус (синус, тангенс, котангенс) из заданного уравнения, рисуем соответствующие ему углы и записываем ответ. Конечно, нужно сообразить, что за углы мы увидели на круге. Иногда это не так очевидно. Ну так я и говорил, что здесь логика требуется.)
Для примера разберём ещё одно тригонометрическое уравнение:
sinx = 0,5
Прошу учесть, что число 0,5 - это не единственно возможное число в уравнениях!) Просто мне его писать удобнее, чем корни и дроби.
Работаем по общему принципу. Рисуем круг, отмечаем (на оси синусов, разумеется!) 0,5. Рисуем сразу все углы, соответствующие этому синусу. Получим вот такую картину:
Сначала разбираемся с углом х в первой четверти. Вспоминаем таблицу синусов и определяем величину этого угла. Дело нехитрое:
х = π/6
Вспоминаем про полные обороты и, с чистой совестью, записываем первую серию ответов:
х1 = π/6 + 2πn, n ∈ Z
Половина дела сделана. А вот теперь надо определить второй угол... Это похитрее, чем в косинусах, да... Но логика нас спасёт! Как определить второй угол через х? Да легко! Треугольнички на картинке одинаковые, и красный угол х равен углу х. Только отсчитан он от угла π в отрицательном направлении. Потому и красный.) А нам для ответа нужен угол, отсчитанный правильно, от положительной полуоси ОХ, т.е. от угла 0 градусов.
Наводим курсор на рисунок и всё видим. Первый угол я убрал, чтобы не усложнял картинку. Интересующий нас угол (нарисован зелёным) будет равен:
π - х
Икс мы знаем, это π/6. Стало быть, второй угол будет:
π - π/6 = 5π/6
Снова вспоминаем про добавку полных оборотов и записываем вторую серию ответов:
х2 = 5π/6 + 2πn, n ∈ Z
Вот и всё. Полноценный ответ состоит из двух серий корней:
х1 = π/6 + 2πn, n ∈ Z
х2 = 5π/6 + 2πn, n ∈ Z
Уравнения с тангенсом и котангенсом можно легко решать по тому же общему принципу решения тригонометрических уравнений. Если, конечно, знаете, как нарисовать тангенс и котангенс на тригонометрическом круге.
В приведённых выше примерах я использовал табличное значение синуса и косинуса: 0,5. Т.е. одно из тех значений, которые ученик знать обязан. А теперь расширим наши возможности на все остальные значения. Решать, так решать!)
Итак, пусть нам надо решить вот такое тригонометрическое уравнение:
cosx = 2/3
Такого значения косинуса в кратких таблицах нет. Хладнокровно игнорируем этот жуткий факт. Рисуем круг, отмечаем на оси косинусов 2/3 и рисуем соответствующие углы. Получаем вот такую картинку.
Разбираемся, для начала, с углом в первой четверти. Знать бы, чему равен икс, сразу бы ответ записали! Не знаем... Провал!? Спокойствие! Математика своих в беде не бросает! Она на этот случай придумала арккосинусы. Не в курсе? Зря. Выясните, что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс? Это много проще, чем вы думаете. По этой ссылке ни одного мудрёного заклинания насчёт "обратных тригонометрических функций" нету... Лишнее это в данной теме.
Если вы в курсе, достаточно сказать себе: "Икс - это угол, косинус которого равен 2/3". И сразу, чисто по определению арккосинуса, можно записать:
х = arccos 2/3
Вспоминаем про дополнительные обороты и спокойно записываем первую серию корней нашего тригонометрического уравнения:
х1 = arccos 2/3 + 2πn, n ∈ Z
Практически автоматом записывается и вторая серия корней, для второго угла. Всё то же самое, только икс (arccos 2/3) будет с минусом:
х2 = - arccos 2/3 + 2πn, n ∈ Z
И все дела! Это правильный ответ. Даже проще, чем с табличными значениями. Ничего вспоминать не надо.) Кстати, самые внимательные заметят, что эта картинка с решением через арккосинус ничем, в сущности, не отличается от картинки для уравнения cosx = 0,5.
Именно так! Общий принцип на то и общий! Я специально нарисовал две почти одинаковые картинки. Круг нам показывает угол х по его косинусу. Табличный это косинус, или нет - кругу неведомо. Что это за угол, π/3, или арккосинус какой - это уж нам решать.
С синусом та же песня. Например:
sinx = 1/3
Вновь рисуем круг, отмечаем синус, равный 1/3, рисуем углы. Получается вот такая картина:
И опять картинка почти та же, что и для уравнения sinx = 0,5. Опять начинаем с угла в первой четверти. Чему равен икс, если его синус равен 1/3? Не вопрос!
х = arcsin 1/3
Вот и готова первая пачка корней:
х1 = arcsin 1/3 + 2πn, n ∈ Z
Разбираемся со вторым углом. В примере с табличным значением 0,5 он был равен:
π - х
Так и здесь он будет точно такой же! Только икс другой, arcsin 1/3. Ну и что!? Можно смело записывать вторую пачку корней:
х2 = π - arcsin 1/3 + 2πn, n ∈ Z
Это совершенно правильный ответ. Хотя и выглядит не очень привычно. Зато понятно, надеюсь.)
Вот так решаются тригонометрические уравнения с помощью круга. Этот путь нагляден и понятен. Именно он спасает в тригонометрических уравнениях с отбором корней на заданном интервале, в тригонометрических неравенствах - те вообще решаются практически всегда по кругу. Короче, в любых заданиях, которые чуть сложнее стандартных.
Применим знания на практике?)
Решить тригонометрические уравнения: Сначала попроще, прямо по этому уроку.
Подсказка: здесь придётся вспоминать таблицу синусов, косинусов, тангенсов, котангенсов.
Теперь посложнее.
Подсказка: здесь придётся поразмышлять над кругом. Лично.)
А теперь внешне простенькие... Их ещё частными случаями называют.
sinx = 0
sinx = 1
cosx = 0
cosx = -1
Подсказка: здесь надо сообразить по кругу, где две серии ответов, а где одна... И как вместо двух серий ответов записать одну. Да так, чтобы ни один корень из бесконечного количества не потерялся!)
Ну и совсем простые):
sinx = 0,3
cosx = π
tgx = 1,2
ctgx = 3,7
Подсказка: здесь надо знать, что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс? Самые простые определения. Зато вспоминать никаких табличных значений не надо!)
Ответы, разумеется, в беспорядке):
х1 = arcsin0,3 + 2πn, n ∈ Z
х2 = π - arcsin0,3 + 2πn, n ∈ Z
x = arcctg3,7 + πn, n ∈ Z
x = arctg1,2 + πn, n ∈ Z
решений нет x = πk, k ∈ Z x = π + 2πn, n ∈ Z