Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Введя обозначения




(7.108)

и

(7.109)

 

преобразуем формулы (7.96) и (7.107) к следующему виду:

 

(7.110)

(7.111)

(7.112)

(7.113)

 

Поделив обе части выражения (7.89) на акр2 представим его в виде

 

или

откуда

(7.114)

и

 

(7.115)

 

Связь между числами М и приведем в таком виде:

 

(7.116)

 

Пересчет давлений и плотностей заторможенного потока из абсолютного движения в относительное и обратно удобно производить с помощью газодинамических функций, основываясь на том, что р и ρ сохраняют свои значения независимо от системы координат, а именно:

 

(7.117)

 

(7.118)

 

Рассмотрим связь относительной скорости w с площадью поперечного сечения потока для изоэнтропного относительного движения, когда трение и теплообмен отсутствуют.

В уравнении неразрывности ρwF=соnst, записанном в дифференциальном виде

представим dρ/ρ так:

помня, что dр/dρ=а2. Величину dр/ρ найдем из уравнения Бернулли (7.94), которое для изоэнтропного течения примет вид

 

Тогда

 

Подставив это в уравнение неразрывности, получим

udu / а2 – wdw / а2+ dw / w + dF / F = 0,

 

или

(7.119)

 

Из этого уравнения видно, что изменение относительной скорости в каналах рабочего колеса связано не только с формой канала, но и с его расстоянием от оси вращения. Если это расстояние постоянно, т.е. u=соnst, то уравнение (7.119) превращается в уравнение Гюгонио, следовательно, закон изменения скорости ничем не отличается от такового для неподвижных каналов. Увеличение и вдоль потока действует в ту же сторону, что и расширение канала — замедляет дозвуковой поток и разгоняет сверхзвуковой.

Если канал имеет форму сопла Лаваля, то критическое сечение может получиться в различных местах, в зависимости от закона изменения переносной скорости u. Положив в уравнении (7.119) М=1, имеем условие, определяющее местоположение критического сечения

 

 

При u=соnst dF=0, т.е. критическое сечение находится в горле. При d(u2/2)>0 dF<0, следовательно, оно располагается в суживающейся части, а при d(u2/2)<0 – в расширяющейся, так как dF>0 (рис. 166). Этим трем случаям соответствует такой характер изменения параметров торможения в относительном движении:

 

1. .

 

2. .

 

3. .

 

 


[1] См. файл Уравнение неразрывности.pdf

 

[2] В некоторых иностранных литературных источниках понятия конфузора и диффузора связывают не с изменением скорости, а с изменением площади: суживающийся канал называют конфузором, а расширяющийся — диффузором.

 

[3] См. файл Газодинамические функции.pdf

[4] Увеличение скорости за счет трения, кажущееся на первый взгляд парадоксальным, объясняется довольно просто. В результате преодоления сил трения уменьшается давление. В сжимаемой жидкости это приводит к падению плотности, следовательно, при постоянной площади сечения скорость должна возрастать. В несжимаемой жидкости скорость будет сохраняться постоянной.

[5] См., напр.: Л.А.Вулис. Термодинамика газовых потоков, Энергоиздат, 1950.

[6] В магнитной газодинамике работа сил электростатического или электромагнитного поля не называется внешней механической и учитывается специальными членами, входящими в уравнения.

[7] Знак минус появился в связи с тем, что, вычисляя работу, совершенную газом, надо брать момент, с которым струя действует на лопатки, тогда как уравнение (3.45) определяет момент, с которым лопатки действуют на струю.

[8] В теории косых скачков уплотнения применялась аналогичная величина — температура частичного торможения Т*.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 524 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2322 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.