Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Внутриимпульсная частотная модуляция [1]




Сигнал с внутриимпульсной частотной модуляцией – это радиоимпульс, высокочастотное заполнение которого имеет переменную частоту.

Рис. 9.3.1. ЛЧМ – сигнал.

ЛЧМ – сигналы. Если закон изменения мгновенной частоты заполнения имеет линейный характер, то такие сигналы носят название ЛЧМ – сигналов (линейная частотная модуляция). Наиболее широкое применение они получили в радиолокации. Пример ЛЧМ – сигнала с огибающей прямоугольной формы приведен на рис. 9.3.1.

ЛЧМ – сигналы имеют одно замечательное свойство. Если сигнал подать на частотно-зависимую линию задержки, время задержки сигнала которой велико на малых частотах (в начальной части ЛЧМ – сигнала) и уменьшается по мере нарастания частоты в ЛЧМ – сигнале, то на выходе такой линии происходит "сжатие" сигнала в один период высокочастотного колебания путем суммирования амплитудных значений всех периодов сигнала. При этом происходит увеличение амплитуды выходного сигнала и уменьшение статистических шумов, так как суммируемые одновременно по этим же периодам шумы не коррелированны.

Для модели радиоимпульса с прямоугольной огибающей примем его длительность равной tи, и точку t = 0 поместим в центр радиоимпульса. Допустим также, что частота заполнения линейно нарастает от начала импульса к его концу со скоростью m (с-2), при этом:

w(t) = wo + mt. (9.3.1)

Девиация частоты за время длительности импульса и полная фаза сигнала:

Dw = m×tи. (9.3.2)

y(t) = wot + mt2/2. (9.3.3)

Уравнение ЛЧМ – сигнала:

u(t) = (9.3.4)

Спектр прямоугольного ЛЧМ – сигнала вычисляется через преобразование Фурье. Девиация частоты за время длительности импульса по сравнению с несущей частотой обычно мала (Dw << wo) и форма спектра зависит от так называемой базы импульса:

Dw×tи = m×tи2. (9.3.5)

На рис. 9.3.2 приведен пример формы спектральной плотности ЛЧМ – сигнала при малом значении базы в области несущей частоты сигнала.

Рис.9.3.2. Спектр ЛЧМ- сигнала. Рис. 9.3.3. Спектр при B>>1.

На практике значение базы сигналов обычно много больше 1. Увеличение базы сопровождается расширением полосы спектра Dw, при этом в пределах этой полосы модуль спектральной плотности практически постоянен и равен Um× . Пример спектра приведен на рис. 9.3.3.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 629 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2473 - | 2287 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.