Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Амплитудная модуляция [1,25]




Амплитудная модуляция (amplitude modulation, АМ) исторически была первым видом модуляции, освоенным на практике. В настоящее время АМ применяется в основном только для радиовещания на сравнительно низких частотах (не выше коротких волн) и для передачи изображения в телевизионном вещании. Это обусловлено низким КПД использования энергии модулированных сигналов.

АМ соответствует переносу информации s(t) Þ U(t) при постоянных значениях параметров несущей частоты w и j. АМ – сигнал представляет собой произведение информационной огибающей U(t) и гармонического колебания ее заполнения с более высокими частотами. Форма записи амплитудно-модулированного сигнала:

u(t) = U(t)×cos(wot+jo), (9.1.1)

U(t) = Um×[1+M×s(t)], (9.1.2)

где Um – постоянная амплитуда несущего колебания при отсутствии входного (модулирующего) сигнала s(t), М – коэффициент амплитудной модуляции

Значение М характеризует глубину амплитудной модуляции. В простейшем случае, если модулирующий сигнал представлен одночастотным гармоническим колебанием с амплитудой So, то коэффициент модуляции равен отношению амплитуд модулирующего и несущего колебания М=So/Um. Значение М должно находиться в пределах от 0 до 1 для всех гармоник модулирующего сигнала. При значении М<1 форма огибающей несущего колебания полностью повторяет форму модулирующего сигнала s(t), что можно видеть на рис. 9.1.1 (сигнал s(t) = sin(wst)). Малую глубину модуляции для основных гармоник модулирующего сигнала (М<<1) применять нецелесообразно, т.к. при этом мощность передаваемого информационного сигнала будет много меньше мощности несущего колебания, и мощность передатчика используется неэкономично.

Рис. 9.1.1. Модулированный сигнал. Рис. 9.1.2. Глубокая модуляция

На рис. 9.1.2 приведен пример так называемой глубокой модуляции, при которой значение M стремится к 1 в экстремальных точках функции s(t). При глубокой модуляции используются также понятия относительного коэффициента модуляции вверх: Mв = (Umax - Um)/Um, и модуляции вниз: Mн = (Um - Umin)/Um, которые обычно выражаются в %.

Стопроцентная модуляция (М=1) может приводить к искажениям сигналов при перегрузках передатчика, если последний имеет ограниченный динамический диапазон по амплитуде несущих частот или ограниченную мощность передатчика (увеличение амплитуды несущих колебаний в пиковых интервалах сигнала U(t) в два раза требует увеличения мощности передатчика в четыре раза).

При М>1 возникает так называемая перемодуляция, пример которой приведен на рис. 9.1.3. Форма огибающей при перемодуляции искажается относительно формы модулирующего сигнала и после демодуляции, если применяются ее простейшие методы, информация может искажаться.

Рис. 9.1.3. Перемодуляция сигнала. Рис. 9.1.4. Физические спектры сигналов.

Однотональная модуляция. Простейшая форма модулированного сигнала создается при однотональной амплитудной модуляции – модуляции несущего сигнала гармоническим колебанием с одной частотой W:

u(t) = Um[1+M×cos(Wt)]×cos(wot). (9.1.3)

Значения начальных фазовых углов несущего и модулирующего колебания здесь и в дальнейшем, если это не имеет принципиального значения, для упрощения получаемых выражений будем принимать равными нулю. С учетом формулы cos(x)×cos(y) = (1/2)[cos(x+y)+cos(x-y)] из выражения (9.1.3) получаем:

u(t) = Umcos(wot) + (UmM/2)cos[(wo+W)t] + (UmM/2)cos[(wo-W)t]. (9.1.4)

Отсюда следует, что модулирующее колебание с частотой W перемещается в область частоты wo и расщепляется на два колебания, симметричные относительно частоты wo, с частотами соответственно (wo+W) - верхняя боковая частота, и (wo-W) - нижняя боковая частота (рис. 9.1.4 для сигнала, приведенного на рис. 9.1.1). Амплитуды колебаний на боковых частотах равны друг другу, и при 100%-ной модуляции равны половине амплитуды колебаний несущей частоты. Если получить уравнение (9.1.4) с учетом начальных фаз несущей и модулирующей частоты, то правило изменения фаз аналогично изменению частоты: начальная фаза модулирующего колебания для верхней боковой частоты складывается с начальной фазой несущей, для нижней – вычитаются из фазы несущей. Физическая ширина спектра модулированного сигнала в два раза больше ширины спектра сигнала модуляции.

Энергия однотонального АМ-сигнала. Обозначим раздельными индексами (нес- несущая, вб- верхняя боковая, нб- нижняя боковая) составляющие колебания однотональногоАМ-сигнала (9.1.4) и определим функцию его мгновенной мощности:

u(t) = uнес(t) + uвб(t) + uнб(t).

p(t)=u2(t)= u2нес(t)+u2вб(t)+u2нб(t)+2uнес(t)uвб(t)+2uнес(t)uнб(t)+2uвб(t)uнб(t). (9.1.5)

Для определения средней мощности сигнала выполним усреднение функции p(t):

Pu =

Все взаимные мощности модулированного сигнала при усреднении становятся равными нулю (спектры не перекрываются), при этом:

Pu = Рнес + Рвб + Рнб = Um2/2 + (UmM)2/4. (9.1.6)

Доля мощности боковых частот в единицах мощности несущей частоты:

вб + Рнб)/Рнес = М2/2, (9.1.7)

т.е. не превышает 50% даже при 100%-ной модуляции.

Под полезной мощностью модулированных сигналов понимают мощность, несущую информацию, т.е. в данном случае мощность боковых частот. Коэффициент полезного действия данного типа модуляции определяется отношением мощности боковых частот к общей средней мощности модулированного сигнала:

Рис. 9.1.5.

hАМ = (Um2 M2/4) /Pu = M2/(М2+2). (9.1.8)

Как можно видеть на рис. 9.1.5, даже при М=1 КПД амплитудной модуляции составляет только 33%, а при практическом использовании обычно меньше 20%.

Для модулированных сигналов применяют также понятие пиковой мощности Pmax. Значение пиковой мощности для однотонального АМ-сигнала:

Pmax = Um2 (1+M)2.

Многотональный модулирующий сигнал имеет произвольный спектральный состав. Математическая модель такого сигнала, в том числе непрерывного по частоте, может быть аппроксимирована тригонометрической суммой, в пределе бесконечной:

s(t) = an cos(Wnt+Fn), (9.1.9)

где значения амплитуд an и начальных фаз Fn упорядоченной возрастающей последовательности гармоник Wn произвольны. Подставляя (9.1.9) в (9.1.2) и заменяя произведения M·an парциальными (частичными) коэффициентами модуляции Mn = M·an, получим обобщенное уравнение амплитудно-модулированного сигнала и его физического спектра:

u(t) = Um[1+ Мncos(Wnt+Fn)]×cos(wot+jo). (9.1.10)

u(t) = Umcos(wot+jo) + (Um/2) Mncos[(wo+Wn)t+jo +Fn] +

+ (Um/2) Mncos[(wo-Wn)t+jo -Fn]. (9.1.11)

Рис. 9.1.6. Многотональная модуляция.

На рис. 9.1.6 приведен схематический пример амплитудных спектров модулирующего и АМ-сигналов при многотональной модуляции. Он также содержит полосы верхних и нижних боковых частот относительно несущей частоты wo, являющихся прямой и зеркальной масштабными копиями модулирующего сигнала. Соответственно, полная ширина спектра АМ-сигнала равна удвоенной ширине спектра модулирующего сигнала.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 707 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2181 - | 2137 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.