![]() Поиск: Рекомендуем: ![]() ![]() ![]() ![]() Категории: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Теорема Лагранжа о конечных приращенияхПусть 1) функция y=f(x) определена и непрерывна на отрезке [a;b], 2) существует конечная производная
или Доказательство. 1. При f(a)=f(b) утверждение вытекает из теоремы Ролля. (0=0(b-a)) 2. При f(a)≠f(b). Введем вспомогательную функцию. h 6DHaNwjkYXtpiAS+OIaPBQwqGLmCVzYZQ+SohohKzRu5oskVDHft5Ixh3z4q1PGF5YqeRh4OIQAI 0Y/uRjkpQ3zlzEDByBB57ZuRIUeVIepOqK9FhujoPCrDdZWkcMXVmngfpv43lPULQF/9CwAA//8D AFBLAwQUAAYACAAAACEAgJBuON8AAAAIAQAADwAAAGRycy9kb3ducmV2LnhtbEyPQUvDQBCF74L/ YRnBm92k2qTEbEop6qkItoJ422anSWh2NmS3SfrvnZ7saXi8x5vv5avJtmLA3jeOFMSzCARS6UxD lYLv/fvTEoQPmoxuHaGCC3pYFfd3uc6MG+kLh12oBJeQz7SCOoQuk9KXNVrtZ65DYu/oeqsDy76S ptcjl9tWzqMokVY3xB9q3eGmxvK0O1sFH6Me18/x27A9HTeX3/3i82cbo1KPD9P6FUTAKfyH4YrP 6FAw08GdyXjRsl6knLxeEGy/LNMExEHBPIlSkEUubwcUfwAAAP//AwBQSwECLQAUAAYACAAAACEA toM4kv4AAADhAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBLAQItABQA BgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAAAAAAAAAAAAAAC8BAABfcmVscy8ucmVsc1BLAQItABQA BgAIAAAAIQC0brs5OwkAAEhUAAAOAAAAAAAAAAAAAAAAAC4CAABkcnMvZTJvRG9jLnhtbFBLAQIt ABQABgAIAAAAIQCAkG443wAAAAgBAAAPAAAAAAAAAAAAAAAAAJULAABkcnMvZG93bnJldi54bWxQ SwUGAAAAAAQABADzAAAAoQwAAAAA " o:allowincell="f">
Проведем прямую L׀׀AB, тогда φ(х)= Тогда f(а)-φ(а)= f(а)-0= f(а) f(b)-φ(b)=f(b)-f(b)+f(a)=f(a) Введем функцию g(x)=f(x)- g(a)=f(a)=g(b) Функция g(x) удовлетворяет условиям теоремы Роля: непрерывна в [a;b], т.к. представляет собой разность между непрерывной функцией f(x) и линейной функцией. В промежутке (a;b) имеет конечную производную, равную
![]() Поэтому равенство Дата добавления: 2015-01-25; просмотров: 469 | Нарушение авторских прав | Изречения для студентов Читайте также:
Рекомендуемый контект: Поиск на сайте:
|