.
. 0 () f(x), 0, :
V(x0):
x
V(x0)\{x0}
f(x)≤f(x0) (f(x)≥f(x0))
f(x0+∆)≤f(x0) (f(x0+∆)≥f(x0))
f(x0+∆)<f(x0) (f(x0+∆)>f(x0)),
, ().
0 () .
, 0 .
. ( ) f(x) (a;b) 0 ( ). , 0 , =0
. 0 , .. f(x)≤f(x0) .
, ∆=f(x0+∆)-f(x0)≤0 x0+∆ .
, ∆x>0 (x>x0), .
,
∆x<0 (x<x0), .
,
.. 0 , . . ,
=
=
=0. ...
, x0 . f(x) , =f(x) (0,f(x0)) . ().
. y=f(x) [a;b], (a;b).
f(a)=f(b), , , (a;b),
=0.
.
.. y=f(x) [a;b], , f(x) [a;b] , m . Î[a,b] Þm£f(x)£M (1)
2
1) m=M, (1) , f(x) [a;b] , .. f(x)=const, (a;b).
2) m<M, .. f(x)≠const. m M f() (a;b) (, , f(a)=f(b), m=M, ).
.. . =0. ...