Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение движения тела переменной массы




Движение некоторых тел сопровождается изменением их массы, например масса ра­кеты уменьшается за счет истечения газов, образующихся при сгорании топлива, и т. п.

Выведем уравнение движения тела пе­ременной массы на примере движения ра­кеты. Если в момент времени t масса раке­ты т, а ее скорость v, то по истечении времени dt ее масса уменьшится на dm

 

 

и станет равной т- dm, а скорость станет равной v +d v. Изменение импульса систе­мы за отрезок времени dt

dp = [(m-dm) (v +d v)+dm (v + u)]- m v,

где и — скорость истечения газов относи­тельно ракеты. Тогда

d p = md v + u dm

(учли, что dm dv — малый высшего порядка малости по сравнению с осталь­ными).

Если на систему действуют внешние силы, то d p = F dt, поэтому

F dt = m d v + u dm,

md v /dt= F - u dm/dt. (10.1)

Член - u dm/dt называют реактивной силой

at

F p. Если u противоположен v, то ракета ускоряется, а если совпадает с v, то тормо­зится.

Таким образом, мы получили уравне­ние движения тела переменной массы

m a = F + F p, (10.2)

которое впервые было выведено И. В.Ме­щерским (1859—1935).

Идея применения реактивной силы для создания летательных аппаратов высказы­валась в 1881 г. Н. И. Кибальчичем (1854—1881). К.Э.Циолковский (1857— 1935) в 1903 г. опубликовал статью, где

предложил теорию движения ракеты и ос­новы теории жидкостного реактивного двигателя. Поэтому его считают основате­лем отечественной космонавтики.

Применим уравнение (10.1) к движе­нию ракеты, на которую не действуют ни­какие внешние силы. Полагая F = 0 и счи­тая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим

dv dm т dv/dt=-udm/dt. откуда

Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ра­кеты равна нулю, а ее стартовая масса то, то С = uln m0. Следовательно,

v = uln(m0/m). (10.3)

Это соотношение называется формулой Циолковского. Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты то; 2) чем больше скорость истече­ния и газов, тем больше может быть ко­нечная масса при данной стартовой массе ракеты.

Выражения (10.2) и (10.3) получены для нерелятивистских движений, т. е. для случаев, когда скорости v и u малы по сравнению со скоростью света с.

Контрольные вопросы

• Какая система отсчета называется инерциальной? Почему система отсчета, связанная с Зем­лей, строго говоря, неинерциальна?

• Что такое сила? Как ее можно охарактеризовать?

• Является ли первый закон Ньютона следствием второго закона? Почему? «Сформулировав три закона Ньютона, покажите, какова взаимосвязь между этими законами.» В чем заключается принцип независимости действия сил?

• Какова физическая сущность трения? В чем отличие сухого трения от жидкого? Какие виды внешнего (сухого) трения Вы знаете?

• Что называется механической системой? Какие системы являются замкнутыми? Является ли Вселенная замкнутой системой? Почему?

• В чем заключается закон сохранения импульса? В каких системах он выполняется? Почему он является фундаментальным законом природы?

• Каким свойством пространства обусловливается справедливость закона сохранения импульса?

• Что называется центром масс системы материальных точек? Как движется центр масс за­мкнутой системы?

 

Задачи

2.1. По наклонной плоскости с углом наклона а к горизонту, равным 30°, скользит тело. Опреде­лить скорость тела в конце третьей секунды от начала скольжения, если коэффициент трения 0,15. [ 10,9 м/с]

2.2. Самолет описывает петлю Нестерова радиусом 80 м. Какова должна быть наименьшая скорость самолета, чтобы летчик не оторвался от сиденья в верхней части петли? [28 м/с]

2.3. Блок укреплен на вершине двух наклонных плоскостей, составляющих с горизонтом углы a=30° и beta=45°. Гири равной массы (m1 = m2 = 2 кг) соединены нитью, перекинутой через блок. Считая нить и блок невесомыми, принимая коэффициенты трения гирь о наклонные плоскости равными f 1= f 2= f =0,l и пренебрегая трением в блоке, определить: 1) ускорение, с которым движутся гири; 2) силу натяжения нити. [1) 0,24 м/с2; 2) 12 Н]

2.4. На железнодорожной платформе установлена безоткатная пушка, из которой производится выстрел вдоль полотна под углом s = 45 ° к горизонту. Масса платформы с пушкой М = 20 т, масса снаряда m=10 кг, коэффициент трения между колесами платформы и рельсами f = = 0,002. Определить скорость снаряда, если после выстрела платформа откатилась на рас­стояние s = 3 м. [ v0 = МV 2fgs/(m cosa) = 970 м/с]

2.5. На катере массой m = 5т находится водомет, выбрасывающий m = 25 кг/с воды со скоростью u = 7 м/с относительно катера назад. Пренебрегая сопротивлением движению катера, опреде­лить: 1) скорость катера через 3 мин после начала движения; 2) предельно возможную ско­рость катера. [1) v = u(1-emt/m = 6,6 м/с; 2) 7 м/с]





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 777 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2666 - | 2501 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.