Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие о множестве. Операции над множествами




НАЧАЛЬНЫЕ СВЕДЕНИЯ О МНОЖЕСТВАХ И ФУНКЦИЯХ

 

Понятие о множестве. Операции над множествами

 

Понятие множество относится к исходным понятиям математики. Оно обозначает набор, совокупность каких-либо объектов, называемых элементами множества. Если элемент встречается в наборе, представляющем данное множество , говорят, что элемент принадлежит данному множеству: .

Если каждый элемент, который принадлежит множеству , принадлежит в то же время множеству , то множество называют подмножеством множества ( включается в ). При работе с подмножествами принято, что для любого множества :

Символ используется для обозначения пустого множества, то есть множества, которому не принадлежит ни одного элемента. Множество называется универсальным, если для любого множества выполняется условие . Если выполняются условия и , говорят, что и равные множества: .

Для задания множества можно использовать следующие способы:

1) перечислить все элементы, принадлежащие множеству;

2) задать порождающую процедуру, которая позволяет определить все элементы искомого множества, совершая действия с элементами уже известного множества;

3) указать универсальное множество и характеристическое свойство, позволяющее выбрать из все те и только те элементы, которые принадлежат искомому множеству.

Перечислением элементов можно задать только конечное множество, то есть множество, содержащее конечное число элементов.

Пример 1. Рассмотрим конечные множества, заданные перечислением элементов:

– множество всех букв латинского алфавита;

– множество всех арабских цифр;

– бинарное множество логических констант. ■

С множествами произвольной природы можно совершать операции объединения и пересечения, определять разность множеств и дополнение множества. Наглядное представление об этих операциях дают диаграммы Венна. На таких диаграммах множества изображаются произвольными фигурами, лежащими в плоскости, соответствующей универсальному множеству . Приведем определения для указанных операций.

Объединением множеств и (обозначается как ) называется множество всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств , . Символьная запись данного определения:

Пересечением множеств и (обозначается как ) называется множество всех тех и только тех элементов, которые принадлежат и :

Разностью множеств и (обозначается как ) называется множество всех тех и только тех элементов множества , которые не принадлежат :

Дополнением множества (обозначается как , или ) называется множество всех тех и только тех элементов, которые не принадлежат :

.

Иллюстрации данных операций в виде диаграмм Венна приведены на рис.1-4.

В заключение приведем некоторые тождества теории множеств:

(1)

 





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 750 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2312 - | 2067 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.