Лекции.Орг

Поиск:


Понятие о множестве. Операции над множествами




НАЧАЛЬНЫЕ СВЕДЕНИЯ О МНОЖЕСТВАХ И ФУНКЦИЯХ

 

Понятие о множестве. Операции над множествами

 

Понятие множество относится к исходным понятиям математики. Оно обозначает набор, совокупность каких-либо объектов, называемых элементами множества. Если элемент встречается в наборе, представляющем данное множество , говорят, что элемент принадлежит данному множеству: .

Если каждый элемент, который принадлежит множеству , принадлежит в то же время множеству , то множество называют подмножеством множества ( включается в ). При работе с подмножествами принято, что для любого множества :

Символ используется для обозначения пустого множества, то есть множества, которому не принадлежит ни одного элемента. Множество называется универсальным, если для любого множества выполняется условие . Если выполняются условия и , говорят, что и равные множества: .

Для задания множества можно использовать следующие способы:

1) перечислить все элементы, принадлежащие множеству;

2) задать порождающую процедуру, которая позволяет определить все элементы искомого множества, совершая действия с элементами уже известного множества;

3) указать универсальное множество и характеристическое свойство, позволяющее выбрать из все те и только те элементы, которые принадлежат искомому множеству.

Перечислением элементов можно задать только конечное множество, то есть множество, содержащее конечное число элементов.

Пример 1. Рассмотрим конечные множества, заданные перечислением элементов:

– множество всех букв латинского алфавита;

– множество всех арабских цифр;

– бинарное множество логических констант. ■

С множествами произвольной природы можно совершать операции объединения и пересечения, определять разность множеств и дополнение множества. Наглядное представление об этих операциях дают диаграммы Венна. На таких диаграммах множества изображаются произвольными фигурами, лежащими в плоскости, соответствующей универсальному множеству . Приведем определения для указанных операций.

Объединением множеств и (обозначается как ) называется множество всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств , . Символьная запись данного определения:

Пересечением множеств и (обозначается как ) называется множество всех тех и только тех элементов, которые принадлежат и :

Разностью множеств и (обозначается как ) называется множество всех тех и только тех элементов множества , которые не принадлежат :

Дополнением множества (обозначается как , или ) называется множество всех тех и только тех элементов, которые не принадлежат :

.

Иллюстрации данных операций в виде диаграмм Венна приведены на рис.1-4.

В заключение приведем некоторые тождества теории множеств:

(1)

 






Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 647 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Поиск на сайте:

Рекомендуемый контект:




© 2015-2021 lektsii.org - Контакты - Последнее добавление

Ген: 0.004 с.