Одной из характерных особенностей живого организма является его неразрывная связь с окружающей средой. Организм постоянно воспринимает питательные вещества извне, видоизменяет их, превращает в себе подобные, извлекает из них энергию и выделяет отработанные продукты. Совокупность химических реакций, обеспечивающих связь живого с окружающей средой, и составляет обмен веществ.
Обмен веществ - постоянно протекающий, саморегулирующийся процесс обновления живых организмов. Благодаря обмену веществ создается то единство, которое существует между организмами и окружающей средой.
Обмен веществ (или метаболизм) состоит из двух процессов: ассимиляции (или анаболизма) - синтеза характерных для организма соединений и диссимиляции (или катаболизма) - распада веществ и выведения продуктов этого распада из организма. Совокупность процессов ассимиляции (синтеза) и диссимиляции (распада) составляет основу жизни. Химические реакции, составляющие эти процессы, взаимосвязаны и протекают в определённой последовательности. Различают общий (внешний) обмен веществ, учитывающий поступления в организм веществ и их выделение, и промежуточный обмен веществ, который охватывает превращения этих веществ в организме.
Этапы энергетического обмена.
Большинство живых существ, обитающих на Земле, относятся к аэробам, т. е. используют в процессах обмена веществ кислород из окружающей среды. У аэробов энергетический обмен происходит в три этапа: подготовительный, бескислородный и кислородный. В результате этого органические вещества распадаются до простейших неорганических соединений. У организмов, обитающих в бескислородной среде и не нуждающихся в кислороде, — анаэробов, а также у аэробов при недостатке кислорода ассимиляция происходит в два этапа: подготовительный и бескислородный. В двухэтапном варианте энергетического обмена энергии запасается гораздо меньше, чем в трехэтапном.
Три этапа энергетического обмена. Первый этап называется подготовительным и заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот. Внутри клетки распад органических веществ происходит в лизосомах под действием целого ряда ферментов. В ходе этих реакций энергии выделяется мало, при этом она не запасается в виде АТФ, а рассеивается в виде тепла. Образующиеся в ходе подготовительного этапа соединения (моносахариды, жирные кислоты, аминокислоты и др.) могут использоваться клеткой в реакциях пластического обмена, а также для дальнейшего расщепления с целью получения энергии.
Второй этап энергетического обмена, называемый бескислородным, заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.
Так как наиболее доступным источником энергии в клетке является продукт распада полисахаридов — глюкоза, то второй этап мы рассмотрим на примере именно ее бескислородного расщепления — гликолиза.
Гликолиз — это многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей 6 атомов углерода (С6Н12О6), до двух молекул трехуглеродной пировиноградной кислоты, или ПВК (С3Н4О3).
Реакции гликолиза катализируются многими ферментами, и протекают они в цитоплазме клеток. В ходе гликолиза при расщеплении 1 М глюкозы выделяется 200 кДж энергии, но 60% ее рассеивается в виде тепла. Оставшихся 40% энергии оказывается достаточно для синтеза из двух молекул АДФ двух молекул АТФ. Получившаяся пировиноградная кислота в клетках животных, а также клетках многих грибов и микроорганизмов превращается в молочную кислоту (С3Н6О3):
С6Н12О6 + 2Н3Р04 + 2АДФ 2С3Н6О3 + 2АТФ + 2Н2О.
В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение-, молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2:
С6Н12О6 + 2Н3Р04 + 2 АДФ —2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О.
Существуют также и такие микроорганизмы, в клетках которых в анаэробных условиях образуются не молочная кислота и не этиловый спирт, а, например, уксусная кислота или ацетон и т. д. Однако во всех этих случаях распад одной молекулы глюкозы, так же как и в случае гликолиза, приводит к запасанию двух молекул АТФ.
В результате ферментативного бескислородного расщепления глюкоза распадается не до конечных продуктов (СО2 и Н2О), а до соединений, которые еще богаты энергией и, окисляясь далее, могут дать ее в больших количествах (молочная кислота, этиловый спирт и др.).
Поэтому в аэробных организмах после гликолиза (или спиртового брожения) следует завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание. В процессе третьего этапа органические вещества, образовавшиеся в ходе второго этапа при бескислородном расщеплении и содержащие большие запасы химической энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс, так же как и гликолиз, является многостадийным, но происходит не в цитоплазме, а в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ:
2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 — 6СО2 + 42Н2О + З6АТФ.
Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.
Таким образом, суммарно энергетический обмен клетки в случае распада глюкозы можно представить следующим образом:
С6Н12О6 + 6О2 + 38АДФ + 38Н3Р04 | 6СО2 + 44Н2О + 38АТФ,
Для энергетического обмена, т. е. для получения энергии в виде АТФ, большинство организмов использует углеводы, но для этих целей может быть использовано окисление и липидов, и белков. Однако мономеры белков, т. е. аминокислоты, слишком нужны клетке для синтеза собственных белковых структур. Поэтому белки обычно представляют собой «неприкосновенный запас» клетки и редко расходуются для получения энергии.