Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Матрица линейного преобразования




Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Тогда:

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение: Так как обратная матрица равняется (см. пример 1)

 

 

№22

Линейные пространства


Определение линейного пространства

 

Пусть V - непустое множество (его элементы будем называть векторами и обозначать ...), в котором установлены правила:

1) любым двум элементам соответствует третий элемент называемый суммой элементов (внутренняя операция);

2) каждому и каждому отвечает определенный элемент (внешняя операция).

Множество V называется действительным линейным (векторным) пространством, если выполняются аксиомы:

I.

II.

III. (нулевой элемент, такой, что ).

IV. (элемент, противоположный элементу ), такой, что

V.

VI.

VII.

VIII.
Аналогично определяется комплексное линейное пространство (вместо R рассматривается C).


Подпространство линейного пространства

 

Множество называется подпространством линейного пространства V, если:

1)

2)

 

 

№23

Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.

Иными словами, линейно независимая упорядоченная система векторов e 1,..., e n
образует базис в L если любой вектор x из L может быть представлен в виде

x = С1· e 12 ·e 2+...+С n · e n.

 

Можно определить базис иначе.

Любая упорядоченная линейно независимая система e 1,..., e n векторов n- мерного линейного пространства Ln образует базис этого пространства.

Поскольку n, размерность пространства Ln — максимальное количество линейно независимых векторов пространства, то система векторов x, e 1,..., e n линейно зависима и, следовательно, вектор x линейно выражается через векторы e 1,..., e n:

x = x 1· e 1+ x 2 ·e 2+...+ xn · e n.

Такое разложение вектора по базису единственно.

 

Теорема 1. (О числе векторов в линейно независимых и порождающих системах векторов.) Число векторов в любой линейно независимой системе векторов не превосходит числа векторов в любой порождающей системе векторов этого же векторного пространства.

Доказательство. Пусть произвольная линейно независимая система векторов, - произвольная порождающая система. Допустим, что .

Мы можем считать, что все векторы порождающей системы ненулевые, т.к. нулевые векторы можно удалить из системы и оставшаяся система векторов, очевидно, остается порождающей.

Т.к. порождающая система, то она представляет любой вектор пространства, в том числе и вектор . Присоединим его к этой системе. Получаем линейно зависимую и порождающую систему векторов: . Тогда найдется вектор этой системы, который линейно выражается через предыдущие векторы этой системы и его, в силу леммы, можно удалить из системы, причем оставшаяся система векторов будет по-прежнему порождающей.

Перенумеруем оставшуюся систему векторов: . Т.к. эта система порождающая, то она представляет вектор и, присоединяя его к этой системе, опять получаем линейно зависимую и порождающую систему: .

Далее все повторяется. Найдется вектор в этой системе, который линейно выражается через предыдущие, причем это не может быть вектор , т.к. исходная система линейно независимая и вектор не выражается линейно через вектор . Значит, это может быть только один из векторов . Удаляя его из системы , получаем, после перенумерования, систему , которая будет порождающей системой. Продолжая этот процесс, через шагов получим порождающую систему векторов: , где , т.к. по нашему предположению . Значит, эта система, как порождающая, представляет и вектор , что противоречит условию линейной независимости системы .

Теорема 1 доказана.

Теорема 2. (О количестве векторов в базисе.) В любом базисе векторного пространства содержится одно и тоже число векторов.

Доказательство. Пусть и – два произвольных базиса векторного пространства. Любой базис является линейно независимой и порождающей системой векторов.

Т.к. первая система линейно независимая, а вторая – порождающая, то, по теореме 1, .

Аналогично, вторая система линейно независимая, а первая – порождающая, то . Отсюда следует, что , ч.т.д.

Теорема 2 доказана.

Данная теорема позволяет ввести следующее определение.

Определение. Размерностью векторного пространства V над полем K называется число векторов в его базисе.

Обозначение: или .

 

№24

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

где — координаты вектора.

 

Свойства

· Равные векторы в единой системе координат имеют равные координаты

· Координаты коллинеарных векторов пропорциональны:

Подразумевается, что координаты вектора не равны нулю.

· Квадрат длины вектора равен сумме квадратов его координат:

· При умножении вектора на действительное число каждая его координата умножается на это число:

· При сложении векторов соответствующие координаты векторов складываются:

· Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

· Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

где

· Аналогично, смешанное произведение трех векторов можно найти через определитель

 

Ма́трицей перехо́да от базиса к базису является матрица, столбцы которой — координаты разложения векторов в базисе .

Обозначается

Представление

Так как

.

.

.

.

Матрица перехода это


 

Свойства

· Матрица перехода является невырожденной. То есть определитель этой матрицы не равен нулю.

·

 

№25

Линейные подпространства

Рассмотрим некоторое подмножество X1 линейного пространства X, т.е. X1 Н X.

Определение. Подмножество X1 линейного пространства X называется линейным подпространством, если для любых векторов x, y О X1 и любого числа α:

x + y О X1;

αx О X1.

Рассмотрим два линейных подпространства X1 и X2 линейного пространства X.

Если любой вектор x О X может быть единственным образом представлен в виде x = x1 + x2, где x1 О X1 и x2 О X2, то говорят, что пространство X разложено в прямую сумму подпространств X1 и X2.

Прямая сумма обозначается X = X1 + X2.

Любое линейное пространство может быть разложено в прямую сумму нескольких подпространств. В частности, разложение вектора по базису связано с разложением n–мерного пространства в прямую сумму n одномерных подпространств.

 

Я НЕ НАШЕЛ «ПОДПРОСТРАНСТВА ПРОСТРАНСТВА R3»

№26

Матрица линейного преобразования

В примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении координатных столбцов векторов на фиксированную матрицу, является линейным преобразованием. В этом разделе мы покажем, что все линейные преобразования конечномерного пространства устроены таким же образом.

Пусть -- -мерное линейное пространство, в котором задан базис , -- линейное преобразование. Возьмем произвольный вектор . Пусть -- его координатный столбец. Координатный столбец вектора обозначим .

Запишем разложение вектора по базису пространства . Для образа этого вектора получим

(19.2)


Векторы имеют какие-то координатные столбцы, обозначим их , ,..., соответственно. В этой записи первый индекс показывает номер координаты, а второй индекс -- номер вектора. Соответственно,

Подставим это выражение в равенство (19.2) и, используя предложение 14.3, изменим порядок суммирования

Это равенство означает, что -той координатой вектора служит .

Составим матрицу из координатных столбцов векторов ,...,

Вычислим произведение матрицы на столбец

Мы видим, что -ый элемент столбца совпадает с -ой координатой вектора . Поэтому

(19.3)


Это означает, что в выбранном базисе действие любого линейного преобразования сводится к умножению матрицы на координатный столбец вектора.

Матрица называется матрицей линейного преобразования . Еще раз напомним, как она составлена: первый столбец является координатным столбцом образа первого базисного вектора, второй столбец -- координатным столбцом образа второго базисного вектора и т.д.

 

Пример 19.5 Найдем матрицу линейного преобразования из примера 19.1.

Выберем какой-нибудь базис . Тогда

Следовательно, первый столбец матрицы имеет вид . Аналогично

Второй столбец матрицы имеет вид . В итоге

 

Пример 19.6 Найдем матрицу линейного преобразования из примера 19.2. Угол возьмем равным . В качестве базиса возьмем привычный ортонормированный базис i, j.

Из рисунка 19.7 видно, что вектор имеет координаты и .

Рис.19.7.Координаты образов базисных векторов при преобразовании поворота

 

Поэтому координатный столбец образа первого базисного вектора имеет вид . Координаты образа второго базисного вектора равны и , его координатный столбец имеет вид . В итоге получаем, что в базисе i, j матрица поворота на угол имеет вид

№26

Действия с линейными преобразованиями.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 497 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.159 с.