Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формула Тейлора с остаточными членами в форме Пеано и Лагранжа

Логарифмическая производная

При дифференцировании показательно-степенной функции обычно используют логарифмическую производную Делается это так:

Например,

 

Производные и дифференциалы высших порядков

Производная есть сама функция от поэтому можно взять от неё производную. Полученная таким образом функция (если она существует) называется второй производной от функции и обозначается И вообще:

если известна производная ( порядка), то производная го порядка определяется так: При этом функция называется раз дифференцируемой в точке

Аналогично определяются дифференциалы высшего порядка. Именно:

если известен дифференциал порядка то дифференциал го порядка определяется так: при этом дифференциал независимой переменной и все его степени считаются постоянными дифференцирования.

Имеем И вообще, справедливо утверждение: если функция дифференцируема раз в точке то

Нетрудно доказать следующее утверждение.

Теорема 1. В области определения выписанных ниже функций справедливы равенства:

Производные порядка являются линейными операциями, т.е.

Производная порядка для произведения вычисляется довольно сложно.

Формула Лейбница. Если функции дифференцируемы раз в точке то имеет место равенство

Здесь: число сочетаний из элементов по нулевая производная функции совпадает с ней самой: Легко видеть, что формула (1) напоминает формулу бинома Ньютона; только в ней вместо произведения степеней стоит произведение производных Учитывая это, легко записать, например, третью производную от произведения:

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа

При вычислении пределов функций мы использовали таблицу 1 эквивалентных бесконечно малых. Например, при вычислении предела мы использовали формулы Однако этих формул не достаточно для вычисления предела

Нужны более точные формулы или так называемые асимптотические разложения высших порядков. Переходя к описанию таких разложений, введём следующее понятие.

Определение 5. Пусть функция определена в некоторой проколотой окрестности

точки Говорят, что функция имеет в точке асимптотическое разложение го порядка, если существуют числа такие, что в некоторой в некоторой проколотой окрестности представляется в виде

Здесь Равенство (3) означает, что функция аппроксимируется (приближённо равна) в некоторой малой окрестности точки многочленом. В каком случае функция имеет асимптотическое разложение порядка? Ответ на этот вопрос содержится в следующем утверждении.

Теорема 2. Пусть функция имеет в точке производные до го порядка включительно. Тогда имеет в точке асимптотическое разложение порядка вида

(формулу (4) называют формулой Тейлора с остаточным членом в форме Пеано или локальной формулой Тейлора).

Если в (4) положить то получим формулу называемую формулой Маклорена-Тейлора. Приведём формулы Маклорена-Тейлора для основных элементарных функций.

Теорема 3. Имеют место следующие разложения:

Доказательство этих формул базируется на подсчёте производной го порядка соответствующей функции. Докажем, например, формулу (2).

Итак, пусть По теореме 1 имеем

Значит, в формуле

будут отсутствовать все чётные степени а слагаемые с нечётными степенями имеют вид Следовательно имеет место формула 2.

Замечание 1. В формуле 2 остаточный член можно записать в виде а в формуле 3–

в виде (почему?).

Теорема 2 аппроксимирует функцию лишь в достаточно малой окрестности точки Условия представления функции на некотором отрезке (где может быть достаточно большим) по формуле Тейлора описаны в следующем утверждении.

Теорема 4. Пусть функция удовлетворяет следующим условиям:

1) существуют и непрерывны на отрезке ;

2) производная существует и конечна по-крайней мере на интервале

Тогда для всех функция представляется в виде

где точка находится между и

Формулу (5) называют (глобальной) формулой Тейлора с остаточным членом в форме Лагранжа.

Если в формуле (5) положить то получим равенство или, обозначая будем иметь

Эту формулу называют формулой Лагранжа. Она верна в случае, когда функция непрерывна отрезке а существует и конечна по-крайней мере на интервале Если,кроме того, выполняется условие то существует точка такая, что (теорема Ролля).

 



<== предыдущая лекция | следующая лекция ==>
Абстрагирование и формализация | В однородном поле сил инерции все физические процессы происходят совершенно так же, как и в однородном поле сил тяготения.
Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1047 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2365 - | 2045 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.