Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры записи арифметических выражений




Математическая запись Запись на школьном алгоритмическом языке
x * y / z
x / (y * z) или x / y / z
(a**3 + b**3) / (b*c)
(a[i+1] + b[i-1]) / (2*x*y)
(-b + sqrt(b*b - 4*a*c)) / (2*a)
(x<0) sign(x) * abs(x) ** (1/5)
0.49 * exp(a*a - b*b) + ln(cos(a*a)) ** 3
x/(1 + x*x/(3 + (2*x)**3))

Типичные ошибки в записи выражений:

5x + 1 a + sin x ((a + b)/c**3 Пропущен знак умножения между 5 и х Аргумент x функции sin x не заключен в скобки Не хватает закрывающей скобки

 

7.21. Как записываются логические выражения?

В записи логических выражений помимо арифметических операций сложения, вычитания, умножения, деления и возведения в степень используются операции отношения < (меньше), <= (меньше или равно), > (больше), >= (больше или равно), = (равно), <> (не равно), а также логические операции и, или, не.

Примеры записи логических выражений, истинных при выполнении указанных условий.

Условие Запись на школьном алгоритмическом языке
Дробная часть вещественого числа a равна нулю int(a) = 0
Целое число a — четное mod(a, 2) = 0
Целое число a — нечетное mod(a, 2) = 1
Целое число k кратно семи mod(a, 7) = 0
Каждое из чисел a, b положительно (a>0) и (b>0)
Только одно из чисел a, b положительно ((a>0) и (b<=0)) или ((a<=0) и (b>0))
Хотя бы одно из чисел a, b, c является отрицательным (a<0) или (b<0) или (c<0)
Число x удовлетворяет условию a < x < b (x>a) и (x<b)
Число x имеет значение в промежутке [1, 3] (x>=1) и (x<=3)
Целые числа a и b имеют одинаковую четность ((mod(a, 2)=0) и (mod(b, 2)=0) или ((mod(a, 2)=1) и (mod(b, 2)=1))
Точка с координатами (x, y) лежит в круге радиуса r с центром в точке (a, b) (x-a)**2 + (y-b)**2 < r*r
Уравнение ax^2 + bx + c = 0 не имеет действительных корней b*b - 4*a*c < 0
Точка (x, y) принадлежит первой или третьей четверти ((x>0) и (y>0)) или ((x<0) и (y>0))
Точка (x, y) принадлежит внешности единичного круга с центром в начале координат или его второй четверти (x*x + y*y > 1) или ((x*x + y*y <= 1) и (x<0) и (y>0))
Целые числа a и b являются взаимнопротивоположными a = -b
Целые числа a и b являются взаимнообратными a*b = 1
Число a больше среднего арифметического чисел b, c, d a > (b+c+d) / 3
Число a не меньше среднего геометрического чисел b, c, d a >= (b+c+d) ** (1/3)
Хотя бы одна из логических переменных F1 и F2 имеет значение да F1 или F2
Обе логические переменые F1 и F2 имеют значение да F1 и F2
Обе логические переменые F1 и F2 имеют значение нет не F1 и не F2
Логическая переменная F1 имеет значение да, а логическая переменная F2 имеет значение нет F1 и не F2
Только одна из логических переменных F1 и F2 имеет значение да (F1 и не F2) или (F2 и не F1)

 

 

Упражнения

7.1. Запишите по правилам алгоритмического языка выражения:

a) e)
б) ж)
в) з)
г) и)
д) к)

7.2. Запишите в обычной математической форме арифметические выражения:

а) a / b ** 2; б) a+b/c+1; в) 1/a*b/c; г) a**b**c/2; д) (a**b)**c/2; е) a/b/c/d*p*q; ж) x**y**z/a/b; з) 4/3*3.14*r**3; и) b/sqrt(a*a+b); к) d*c/2/R+a**3; л) 5*arctg(x)-arctg(y)/4; м) lg(u*(1/3)+sqrt(v)+z); н) ln(y*(-sqrt(abs(x)))); о) abs(x**(y/x)-(y/x)**(1/3)); п) sqrt((x1-x2)**2+(y1-y2)**2); р) exp(abs(x-y))*(tg(z)**2+1)**x; c) lg(sqrt(exp(x-y))+x**abs(y)+z); т) sqrt(exp(a*x)*sin(x)**n)/cos(x)**2; у) sqrt(sin(arctg(u))**2+abs(cos(v))); ф) abs(cos(x)+cos(y))**(1+sin(y)**2);

 

7.3. Вычислите значения арифметических выражений при x=1:

а) abs(x-3)/ln(exp(3))*2/lg(10000);

Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;


б) sign(sqrt(sqrt(x+15)))*2**2**2;

в) int(-2.1)*int(-2.9)/int(2.9)+x;

г) -sqrt(x+3)**2**(sign(x+0.5)*3)+tg(0);

д) lg(x)+cos(x**2-1)*sqrt(x+8)-div(2,5);

е) sign(x-2)*sqrt(int(4.3))/abs(min(2,-1));

ж) div(10,x+2)*mod(10,x+6)/max(10,x)*mod(2,5).

7.4. Запишите арифметические выражения, значениями которых являются:

а) площадь треугольника со сторонами a, b, c (a, b, c >0) и полупериметром p;

Ответ: sqrt(p*(p-a)*(p-b)*(p-c));


б) среднее арифметическое и среднее геометрическое чисел a, b, c, d;

в) расстояние от точки с координатами (x,y) до точки (0,0);

г) синус от x градусов;

д) площадь поверхности куба (длина ребра равна а);

е) радиус описанной сферы куба (длина ребра равна а);

ж) координаты точки пересечения двух прямых, заданных уравнениями

a1x+b1y+c1=0 и a2x+b2y+c2=0 (прямые не параллельны).

7.5. Вычислите значения логических выражений:

а) x*x+y*y<=9 при x=1, y=-2

Ответ: да;


б) b*b-4*a*c<0 при a=2, b=1, c=-2;

в) (a>=1) и (a<=2) при a=1.5;

г) (a<1) или (a>1.2) при a=1.5;

д) (mod(a,7)=1) и (div(a,7)=1) при a=8;

е) не ((a>b) и (a<9) или (а*а=4)) при a=5, b=4.

7.6. Запишите логические выражения, истинные только при выполнении указанных условий:

а) x принадлежит отрезку [ a, b ]

Ответ: (x>=a) и (x<=b);

б) x лежит вне отрезка [ a, b ];

в) x принадлежит отрезку [ a, b ] или отрезку [ c, d ];

г) x лежит вне отрезков [ a, b ] и [ c, d ];

д) целое k является нечетным числом;

е) целое k является трехзначным числом, кратным пяти;

ж) элемент ai,j двумерного массива находится на пересечении нечетной строки и четного столбца;

з) прямые a1x+b1y+c1=0 и a2x+b2y+c2=0 параллельны;

и) из чисел a, b, c меньшим является с, а большим b;

к) среди чисел a, b, c, d есть взаимно противоположные;

л) среди целых чисел a, b, c есть хотя бы два четных;

м) из отрезков с длинами a, b, c можно построить треугольник;

н) треугольники со сторонами a1, b1, c1 и a2, b2, c2 подобны;

о) точка с координатами (x,y) принадлежит внутренней области треугольника с вершинами A (0,5), B (5,0) и C (1,0);

п) точка с координатами (x,y) принадлежит области, внешней по отношению к треугольнику с вершинами A (0,5), B (1,0) и C (5,0);

р) четырехугольник со сторонами a, b, c и d является ромбом.

7.7. Начертите на плоскости (x,y) область, в которой и только в которой истинно указанное выражение. Границу, не принадлежащую этой области, изобразите пунктиром.

 

а) (x<=0) и (y>=0) Ответ: е) ((x-2)**2+y*y<=4) и (y>x/2) Ответ:
б) (x>=0) или (y<=0) в) x+y>=0 г) (x+y>0) и (y<0) д) abs(x)+abs(y)>=1 ж) (x*x+y*y<1) и (y>x*x); з) (y>=x) и (y+x>=0) и (y<=1); и) (abs(x)<=1) и (y<2); к) (x**2+y**2<4) и (x**2+y**2>1);

 

7.8. Запишите логическое выражение, которое принимает значение "истина" тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной области.

 

7.9. Пусть a =3, b =5, c =7. Какие значения будут иметь эти переменные в результате выполнения последовательности операторов:

а) a:=a+1; b:=a+b; c:=a+b; a:=sqrt(a)

Решение: a =3+1=4, b =4+5=9, c =4+9=13, a = {корень квадратный из} 4 =2.

Ответ: а =2, b =9, c =13;

б) с :=a*b+2; b:=b+1; a:=c-b**2; b:=b*a;

в) b:=b+a; c:=c+b; b:=1/b*c;

г) p:=c; c:=b; b:=a; a:=p; c:=a*b*c*p;

д) c:=a**(b-3); b:=b-3; a:=(c+1)/2*b; c:=(a+b)*a;

е) x:=a; a:=b; b:=c; c:=x; a:=sqrt(a+b+c+x-2);

ж) b:=(a+c)**2; a:=lg(b**2)**2; c:=c*a*b.

7.10. Задайте с помощью операторов присваивания следующие действия:

а ) массив X=(x1, x2) преобразовать по правилу: в качестве x1 взять сумму, а в качестве х2 — произведение исходных компонент;

Решение: c:=x[1]; x[1]:=x[1]+x[2]; x[2]:=c*x[2]

б) поменять местами значения элементов массива X=(x1, x2);

в) в массиве A(N) компоненту с номером i (1<i<N) заменить полусуммой исходных соседних с нею компонент, соседнюю справа компоненту заменить на нуль, а соседнюю слева компоненту увеличить на 0.5;

г) u = max(x, y, z) + min(x-z, y+z, y, z);

7.11. Задайте с помощью команд если или выбор вычисления по формулам:

a)
б)
в) где
г)
д)
е)
ж) если точка лежит внутри круга радиусом r (r>0) с центром в точке (a,b) в противном случае

 

7.12. Постройте графики функций y(x), заданных командами если:

а) если x<=-1то y:=1/x**2иначе если x<=2то y:=x*xиначе y:=4все все в) если x<-0.5то y:=1/abs(x)иначе если x<1то y:=2иначе y:=1/(x-0.5)все все
Решение г) если x<0то y:=1иначе если x<3.14то y:=cos(x)иначе y:=-1все все
б) если x<-5то y:=-5иначе если x<0то y:=xиначе если x<3то y:=2*xиначе y:=6все все все д) если abs(x)>2то y:=x*xиначе если x<0то y:=-2*xиначе если x>=1то y:=4иначе y:=4*x*x все все все

 

7.13. Определите значение целочисленной переменной S после выполнения операторов:

а) S:=128 нц для i от 1 до 4 S:=div(S,2) кц Решение
i S
   
  128/2=64
  64/2=32
  32/2=16
  16/2=8

Ответ: S=8

г) S:=0нц для i от 1 до 2нц для j от 2 до 3 S:=S+i+jкц кц Решение
i j S
     
    0+1+2=3
    3+1+3=7
    7+2+2=11
    11+2+3=16

Ответ: S=16

б) S:=1; a:=1 нц для i от 1 до 3 S:=S+i*(i+1)*a a:=a+2 кц д) нц для i от 1 до 3 S:=0 нц для j от 2 до 3 S:=S+i+j кц кц
в) S:=1; a:=1 нц для i от 1 до 3 S:= S+i нц для j oт 2 до 3 S:= S+j кц кц е) нц для i от 1 до 2 S:= 0 нц для j oт 2 до 3 нц для k oт 1 до 2 S:= S+i+j+k кц кц кц

 

7.14. Определите значение переменной S после выполнения операторов:

а) i:=0; S:=0 нц пока i<3 i:=i+1; S:=S+i*i кц г) S:=0; N:=125 нц пока N>0 S:=S+mod(N,10) | S — сумма цифр N:=div(N,10) | числа N кц
Решение
Условие i < 3 i S
     
0 < 3? да   0+12=1
1 < 3? да   1+22=5
2 < 3? да   5+32=14
3 < 3? нет(кц)    

Ответ: S=14

Решение
Условие N > 0 S N
     
125 > 0? да 0+5=5 12
12 > 0? да 5+2=7 1
1 > 0? да 7+1=8 0
0 > 0? нет (кц)    

Ответ: S=8

б) S:=0; i:=1 нц пока i>1 S:=S+1/i i:=i-1 кц д) а:=1; b:=1; S:=0; нц пока a<=5 a:=a+b; b:=b+a; S:=S+a+b кц
в) S:=0; i:=1; j:=5 нц пока i<j S:=S+i*j i:=i+1 j:=j-1 кц е) a:=1; b:=1 нц пока a+b<10 a:=a+1 b:=b+a кц S:=a+b

 

7.15. Составьте алгоритмы решения задач линейной структуры (условия этих задач заимствованы из учебного пособия В.М. Заварыкина, В.Г. Житомирского и М.П. Лапчика "Основы информатики и вычислительной техники", 1989):

а) в треугольнике известны три стороны a, b и c; найти (в градусах) углы этого треугольника, используя формулы:

С=180o-(А+В).

Пояснение. Обратите внимание на то, что стандартные тригонометрические функции arccos и arcsin возвращают вычисленное значение в радианной мере.

Решение:

алг Углы треугольника(арг вещ a,b,c, рез вещ UgolA,UgolB,UgolC) нач вещ RadGr,UgolARad | RadGr — коэф. перевода угла из радианной меры в градусную | UgolARad — угол A (в радианах) RadGr:=180/3.14 UgolARad:=ArcCos((b*b+c*c-a*a)/(2*b*c)) UgolA:=UgolARad*RadGr UgolB:=ArcSin(b*sin(UgolARad)/a)*RadGr UgolC:=180-(UgolA+UgolB) кон

б) в треугольнике известны две стороны a, b и угол C (в радианах) между ними; найти сторону c, углы A и B (в радианах) и площадь треугольника, используя формулы:


с2 = a2 + b2 - 2ab cos C.

Пояснение. Сначала нужно найти сторону c, а затем остальные требуемые значения;

в) в треугольнике известны три стороны a, b и c; найти радиус описанной окружности и угол A (в градусах), используя формулы:

где

г) в правильной треугольной пирамиде известны сторона основания a и угол A (в градусах) наклона боковой грани к плоскости основания; найти объем и площадь полной поверхности пирамиды, используя формулы:

V=Socн· H/2;
где
     

д) в усеченном конусе известны радиусы оснований R и r и угол A (в радианах) наклона образующей к поверхности большего основания; найти объем и площадь боковой поверхности конуса, используя формулы:

где
     

e) в правильной четырехугольной пирамиде сторона основания равна a, а боковое ребро наклонено к плоскости основания под углом A; найти объем и площадь полной поверхности пирамиды и площадь сечения, проходящего через вершину пирамиды и диагональ основания d; использовать формулы:

 

7.16. Составьте алгоритм решения задач развлетвляющейся структуры:

а) определить, является ли треугольник с заданными сторонами a, b, c равнобедренным;

Решение:

алг Треугольник(арг вещ a,b,c, рез лог Otvet) дано | a>0, b>0, c>0, a+b>c, a+c>b, b+c>a надо | Otvet = да, если треугольник равнобедренный | Otvet = нет, если треугольник не равноведренный нач если (a=b) или (a=c) или (b=c) то Otvet:= да иначе Otvet:= нет всекон

б) определить количество положительных чисел среди заданных чисел a, b и c;

в) меньшее из двух заданных неравных чисел увеличить вдвое, а большее оставить без изменения;

г) числа a и b — катеты одного прямоугольного треугольника, а c и d — другого; определить, являются ли эти треугольники подобными;

д) даны три точки на плоскости; определить, какая из них ближе к началу координат;

е) определить, принадлежит ли заданная точка (x, y) плоской фигуре, являющейся кольцом с центром в начале координат, с внутренним радиусом r1 и внешним радиусом r2;

ж) упорядочить по возрастанию последовательность трех чисел a, b и c.

 

 

Ответы — Раздел 7. Алгоритмы. Алгоритмизация. Алгоритмические языки

7.1.

а) (x+y)/(x-1/2)-(x-z)/(x*y); б) (1+z)*(x+y/z)/(a-1/(1+x*x)); в) x**(n*(m+2)) + x**(n**m); г) (a+b)**n/(1+a/(a**m-b**(m-n))); д) (a[i]**(2*l) + b[j+1]**(2*k)) * (3**n-x*x*y)/(z-(d[i,j+1]+1)/(z+ y/sqrt(t*t+x*y*z))); е) sqrt(abs(sin(x)**2))/(3.01*x - exp(2*x)); ж) abs(cos(x**3) - sin(y)**2) / (abs(ln(x))**(1/4) + x*y); з) ln(y**(-sqrt(abs(x+1)))) * sin(arctg(z))**2; и) r[i,j]**abs(x-y) - 0.15*abs(sin(exp(-z**8))); к) a**((x+y)/2) - ((x-1)/(abs(y)+1))**(1/3)*exp(-(y+u/2)).

7.2. а) ; б) ; в) ; г) ; д) ; е) ; ж) ; з) ; и) ; к) ; л) ; м) ; н) ; о) ; п) ; р) ; с) ; т) ; у) ; ф) .

7.3. б) 16; в) 5,5; г) -256; д) 3; е) -2; ж) 1.8.

7.4. б) среднее арифметическое: (a+b+c+d)/4; среднее геометрическое: (a*b*c*d)**(1/4); в) sqrt(x*x+y*y); г) sin(x*3.14/180); д) 6*a*a; е) sqrt(3)*a/2; ж) абсцисса: (c1*b2-c2*b1)/(b1*a2-b2*a1); ордината: (c2*a1-c1*a2)/(b1*a2-b2*a1).

7.5. б) нет; в) да; г) да; д) да; е) нет;

7.6.

б) (x < a) или (x > b); в) ((x>=a) и (x<=b)) или ((x>=c) и (x<=d)); г) ((x < a) или (x > b)) и ((x < c) или (x > d)); д) mod(k,2)=1; е) (mod(k,5)=0) и (k > 99) и (k < 1000); ж) (mod(i,2)=1) и (mod(j,2)=0); з) a1*b2=a2*b1; и) (c < a) и (b > a); к) (a=-b) или (a=-c) или (a=-d) или (b=-c) или (b=-d) или (c=-d); л) ((mod(a,2)=0) и (mod(b,2)=0)) или ((mod(a,2)=0) и (mod(c,2)=0)) или ((mod(b,2)=0) и (mod(с,2)=0)); м) (a>0) и (b>0) и (c>0) и (a+b>c) и (a+c>b) и (b+c>a); н) ((a1*b2=a2*b1) и (a1*c2=a2*c1)) или ((a1*c2=a2*b1) и (a1*b2=a2*c1)) или ((a1*c2=b2*b1) и (a1*a2=b2*c1)) или ((a1*a2=b2*b1) и (a1*c2=b2*c1)) или ((a1*a2=c2*b1) и (a1*b2=c2*c1)) или ((a1*b2=c2*b1) и (a1*a2=c2*c1)); о) (y>5-5*x) и (y<5-x) и (y>0); п) (y<5-5*x)) или (y>5-x) или (y<0); р) (a=b) и (c=d) и (b=c).

7.7. б) в) г) д) ж) з) и) к)

7.8.

а) (y>=1-x) и ((y<=0) или (x<=0)); б) (y<1) и (y>=x) и (y>=-x) (вариант ответа: (y<1) и (y>=abs(x))); в) (abs(x)<=1) и (abs(y)<1); г) ((x-1)*(x-1)+y*y<=4) и (y<=3-x) и (y>=x-3); д) (abs(x)<=3) и (abs(y)<=3) и (x*x+y*y>=9) и ((x>=0) или (y<=0)); е) (abs(x)+abs(y)<=2) и (sign(x)<>sign(y)) или (x*x+y*y<=4) и ((y>=2-x) или (y<=-x-2)); ж) ((y>=x*x) или (y<=-x*x)) и ((x>=y*y) или (x<=-y*y)); з) (((x+2)*(x+2)+y*y<=4) и ((x+2)*(x+2)+y*y>=1)) или (x>=-1); и) (((y<=0)=(y>=-x)) или ((x>=0)=(y>=x))) и (x*x+y*y<=1).

7.9. б) a=-19; b=-114; c=17; в) a=3; b=1,875; c=15; г) a=7; b=3; c=735; д) a=10; b=2; c=120; е) a=4; b=7; c=3; ж) a=16; b=100, c=11200.

7.10. б) c:=x[1]; x[1]:=x[2]; x[2]:=c; в) a[i]:=(a[i-1]+a[i+1])/2; a[i+1]:=0; a[i-1]:=a[i-1]+0.5; г) u:=max(max(x, y), z) + min(min(x-z,y+z), min(y,z)).

7.11.

а) если x <= -100 б) если x*x+y*y <= 1 то y:=sign(x)*abs(x)**(1/7) то z:=x*x+y*y иначе если x < 100 иначе если y>=x то y:=sign(x)*abs(x)**(1/3) то z:=x+y иначе y:=sqrt(x) иначе z:=0.5 все все все все в) если x < 0 г) выбор то z:=lg(-x) при с=0: z:=1 иначе z:=sqrt(x+1) при с=1: z:=x все при с=2: z:=3*x*x - 1/2 если z>=0 при с=3: z:=x*x*x - 3*x/2 то F:=2*z+1 иначе z:=2*x**4 - 3*x/2 иначе F:=sin(z) все все д) если abs(x)+abs(y) < r е) если x>1 то z:=sqrt(x*x+y*y) то если y>1 иначе z:=max(abs(x), abs(y)) то v:=x+y все иначе v:=x-y всеж) если (x-a)**2 +(y-b)**2 < r*r иначе если y>0 то z:=abs(x)+abs(y) то v:=y-x иначе z:=x+y иначе v:=-x-y все все все

7.12. б) в) г) д)

7.13. б) 81; в) 21; д) 11; е) 44.

7.14. б) 0; в) 13; д) 52; е) 14.

7.15.

б) алг Треугольник1(арг вещ a,b,UgolC, рез вещ c, UgolA, UgolB, S) нач ввод a, b, UgolC c:=sqrt(a*a+b*b-2*a*b*cos(UgolC)) UgolA:=arcsin(a*sin(UgolC)/c) UgolB:=arcsin(b*sin(UgolC)/c) S:=b*c*sin(UgolA)/2 вывод c, UgolA, UgolB, S кон в) алг Треугольник2(арг вещ a,b,c, рез вещ Radius,UgolA) нач вещ p ввод a,b,c p:=(a+b+c)/2 UgolA:=2*arctg(sqrt((p-b)*(p-c)/(p*(p-a))))*180/3.14 Radius:=a*b*c/(4*sqrt(p*(p-a)*(p-b)*(p-c))) вывод Radius, UgolA кон г) алг Объем и Площадь Пирамиды(арг вещ a,UgolAGrad, рез вещ V, S) нач вещ H,SBase,UgolARad | H - высота пирамиды; SBase - площадь основания ввод a,UgolAGrad UgolARad:=UgolAGrad*3.14/180 SBase:=a*a*sqrt(3)/4 H:=a*sqrt(3)/6*tg(UgolARad) V:=SBase*H/3 S:=SBase*(1+1/cos(UgolARad)) вывод V, S кон д) алг Объем и Площадь конуса(арг вещ RBig,RSmall,Ugol, рез вещ V, S) нач вещ H,L ввод RBig,RSmall,Ugol H:=(RBig-RSmall)*tg(Ugol) L:=(RBig-RadSmall)/cos(Ugol) V:=1/3*3.14*H*(RSmall**2 + RBig**2 + RSmall*RBig) S:=3.14*L*(RBig+RSmall) вывод V, S кон е) алг Параметры пирамиды (арг вещ a,UgolA, рез вещ V, S, Sесtion) нач вещ H ввод a,UgolA H:=a*sqrt(2)/2*tg(UgolA) V:=1/3*a*a*H Sесtion:=a*H*sqrt(2)/2 S:=a*a*(1+sqrt(2*tg(UgolA)**2+1)) вывод V, S, Sесtion кон

7.16.

б) алг Количество положительных(арг вещ a,b,c, рез цел k) надо | k - количество положительных чисел среди чисел a,b,c нач ввод a,b,c; k:=0 если a>0 то k:=k+1 все если b>0 то k:=k+1 все если c>0 то k:=k+1 все вывод k кон в) алг Преобразование(арг рез вещ a,b) надо |меньшее из a,b увеличено вдвое нач ввод a,b если a>b то b:=b*2 иначе a:=a*2 все вывод a,b кон г) алг Подобие треугольников(арг вещ a,b,c,d, рез лог Otvet) дано | a,b и c,d - катеты двух треугольников надо | Otvet=да, если треугольники подобны нач ввод a,b,c,d если (a*d=с*b) или (a*c=d*b) то Otvet:= да иначе Otvet:= нет все вывод Otvet кон д) алг Точки(арг вещ xA,yA,xB,yB,xC,yC, рез лит Otvet) нач вещ DistA,DistB,DistC ввод xA,yA,xB,yB,xC,yC DistA:=sqrt(xA**2 + yA**2) DistB:=sqrt(xB**2 + yB**2) DistC:=sqrt(xC**2 + yC**2) если (DistA < DistB) и (DistA < DistC) то Otvet:="Это точка А" иначе если DistB < DistC то Otvet:="Это точка B" иначе Otvet:="Это точка C" все все вывод Otvet кон е) алг Принадлежность кольцу(арг вещ x,y,r1,r2, рез лог Otvet) дано | r2>r1 надо | Otvet=да, если точка (x,y) принадлежит кольцу | c внутренним радиусом r1 и внешним радиусом r2 нач ввод x,y,r1,r2 если (x*x+y*y<=r2*r2) и (x*x+y*y>=r1*r1) то Otvet:= да иначе Otvet:= нет все вывод Otvet кон ж) алг Упорядочение по возрастанию(арг рез вещ a, b, c) надо | числа a, b, c упорядочены по возрастанию нач вещ t ввод a, b, c если a>b то t:=a; a:=b; b:=t | меняются местами значения a и b все если a>c то t:=a; a:=c; c:=t | меняются местами значения a и c все если b>c то t:=b; b:=c; c:=t | меняются местами значения b и c все вывод a, b, c кон




Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1261 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2207 - | 2160 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.