Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Многофакторый дисперсионный анализ




 

Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным дисперсионным анализом нет. Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного дисперсионного анализа (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие.

Общая схема двухфакторного эксперимента, данные которого обрабатываются дисперсионным анализом имеет вид:

 
 

 

 


Данные, подвергаемые многофакторному дисперсионному анализу, часто обозначают в соответствии с количеством факторов и их уровней.

Предположив, что в рассматриваемой задаче о каче­стве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные различия в качестве изделий по каждому фактору:

А – партия изделий;

B – станок.

В результате получается переход к задаче двухфакторного дисперсионного анализа.

Все данные представлены в таблице 1.2, в которой по строкам - уровни Ai фактора А, по столбцам – уровни Bj фактора В, а в соответствующих ячейках, табли­цы находятся значения показателя качества изделий xijk (i=1,2,...,m; j=1,2,...,l; k=1,2,...,n).

 

Таблица 1.2 – Показатели качества изделий

  B1 B2 Bj Bl
A1 x11l,…,x11k x12l,…,x12k x1jl,…,x1jk x1ll,…,x1lk
A2 x21l,…,x21k x22l,…,x22k x2jl,…,x2jk x2ll,…,x2lk
Ai xi1l,…,xi1k xi2l,…,xi2k xijl,…,xijk xjll,…,xjlk
Am xm1l,…,xm1k xm2l,…,xm2k xmjl,…,xmjk xmll,…,xmlk

 

Двухфакторная дисперсионная модель имеет вид:

xijk=м+Fi+Gj+Iijijk,

где xijk - значение наблюдения в ячейке ij с номером k;

м - общая средняя;

Fi - эффект, обусловленный влиянием i-го уровня фактора А;

Gj - эффект, обусловленный влиянием j-го уровня фактора В;

Iij - эффект, обусловленный взаимодействием двух факто­ров, т.е. отклонение от средней по наблюдениям в ячейке ij от суммы первых трех слагаемых в модели;

еijk - возмущение, обусловленное вариацией переменной внутри отдельной ячейки.

Предполагается, что еijk имеет нормальный закон распределения N(0; с2), а все математические ожидания F*, G*, Ii*, I*j равны нулю.

В таблице представлен общий вид вычисления значений, с помощью дисперсионного анализа.

Базовая таблица дисперсионного анализа

Компоненты дисперсии Сумма квадратов Число степеней свободы Средние квадраты
Межгруп-повая (фактор А) m-1
Межгруп-повая (фактор B) l-1
Взаимодействие (m-1)(l-1)
Остаточная mln - ml
Общая mln - 1  

 

Проверка нулевых гипотез HA, HB, HAB об отсутствии влияния на рассматриваемую переменную факторов А, B и их взаимодействия AB осуществляется сравнением отношений , , (для модели I с фиксированными уровнями факторов) или отношений , , (для случайной модели II) с соответствующими табличными значениями F – критерия Фишера–Снедекора. Для смешанной модели III проверка гипотез относительно факторов с фиксированными уровнями производится также как и в модели II, а факторов со случайными уровнями – как в модели I.

Если n=1, т.е. при одном наблюдении в ячейке, то не все нулевые гипотезы могут быть проверены так как выпадает компонента Q3 из общей суммы квадратов отклонений, а с ней и средний квадрат , так как в этом случае не может быть речи о взаимодействии факторов.

Отклонение от основных предпосылок дисперсионного анализа – нормальности распределения исследуемой переменной и равенства дисперсий в ячейках (если оно не чрезмерное) – не сказывается существенно на результатах дисперсионного анализа при равном числе наблюдений в ячейках, но может быть очень чувствительно при неравном их числе. Кроме того, при неравном числе наблюдений в ячейках резко возрастает сложность аппарата дисперсионного анализа. Поэтому рекомендуется планировать схему с равным числом наблюдений в ячейках, а если встречаются недостающие данные, то возмещать их средними значениями других наблюдений в ячейках. При этом, однако, искусственно введенные недостающие данные не следует учитывать при подсчете числа степеней свободы.

Библиография

1. Ермолаев, О.Ю. Математическая статистика для психологов / О.Ю. Ермолаев. - М.: МПСИ: Флинта. - 2002. – 325 с.

2. Наследов, А.Д. Математические методы в психологическом исследовании. Анализ и интерпретация данных / А.Д. Наследов. - СПб.: Речь. - 2004.

3. Бурлачук, Л.Ф., Морозов С.М. Словарь – справочник по психодиагностике / Л.Ф. Бурлачук, С.М. Морозов – СПб: Питер Ком. - 1999. – 528 с.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 350 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2444 - | 2317 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.