Омский Государственный Технический Университет
«Кафедра теплоэнергетики»
курсовой проект
по теме:
Газотурбинные двигатели
Выполнил: студент
группы ПТЭ-313
Горбунов И.П.
Проверил: доцент,
К.Т.Н.
Приходченко А.В.
Омск 2006
Содержание
Задание на курсовой проект............................................................... 2
Введение............................................................................................... 3
1.Выбор оптимальной степени повышения давления........................ 6
2. Расчет тепловой схемы ГТУ с регенерацией.................................. 8
3. Расчёт турбины.............................................................................. 12
4. Расчёт компрессора ГТУ............................................................... 21
Литература........................................................................................ 26
Введение
Газотурбинной установкой ГТУ называют тепловой двигатель, состоящий из трёх основных элементов: воздушного компрессора, камеры сгорания и газовой турбины. На рисунке 1 представлена схема простой ГТУ. Принцип действия установки сводится к следующему. Атмосферный воздух сжимается компрессором К и при повышенном давлении подаётся в камеру сгорания КС, куда одновременно подают жидкое топливо топливным насосом ТН или газообразное топливо от газового компрессора. В камере сгорания воздух разделяется на два потока: один поток в количестве, необходимом для сгорания топлива поступает внутрь жаровой трубы ЖТ; второй – обтекает жаровую трубу снаружи и подмешивается к продуктам сгорания для понижения их температуры. Процесс сгорания в камере происходит при почти постоянном давлении. Получающийся после смешения потоков газ поступает в газовую турбину Т, в которой, расширяясь, совершает работу, а затем выбрасывается в атмосферу.
Развиваемая турбиной мощность частично расходуется на привод компрессора, а оставшаяся часть является полезной мощностью газотурбинной установки.
Рисунок 1
В цикле простой ГТУ газы покидают температуру при высокой температурой, что является основной причиной низкой энергетической эффективности подобных установок. Одним из путей использования теплоты уходящих газов является применение теплообменных аппаратов – регенераторов, в которых уходящие газы отдают часть своей теплоты воздуху, сжатому в компрессоре. Схема ГТУ с регенератором показана на рисунке 2.
Цикл простой ГТУ без учёта потерь в воздушном и газовом трактах представлен в T, s - диаграмме на рисунке 3, а. Точка a определяется начальными параметрами воздуха перед компрессором. Линия ab соответствует процессу сжатия воздуха в компрессоре до параметров pb и Tb, а линия ab' – изоэнтропийному сжатию до того же конечного давления pb и температуры Tbt. Линией bc изображён процесс изобарического подвода теплоты в камере сгорания. Линия cd соответствует процессу расширения газа в турбине до давления pd, cd' – изоэнтропийному расширению до того же давления pd. Линия da – условное замыкание цикла. На самом деле в точке d продукты сгорания выбрасываются в атмосферу. Следует отметить, что изображение всего цикла ГТУ на одной диаграмме условно, поскольку построено для одного неизменного вещества, в то время как процессы, составляющие цикл соответствуют разным веществам. Так в процессе сжатия в качестве рабочего тела выступает воздух, в процессе расширения – продукты сгорания, а процесс в камере сгорания в результате химической реакции протекает при переменном составе рабочей среды. Не смотря на это, условность изображения цикла позволяет с достаточной точностью проводить определение характеристик ГТУ.
Рисунок 2
Рисунок 3
Процесс ГТУ с регенерацией в T, s - диаграмме изображён на рисунке 3, б. Линия be соответствует нагреву воздуха, а линия df – охлаждению продуктов сгорания в регенераторе.
В настоящее время ГТУ применяются для различных целей. Широкое распространение они получили в авиации и дальнем газоснабжении. В авиации газотурбинный двигатель занимает ведущее место, почти полностью вытеснив двигатель внутреннего сгорания. На компрессорных станциях магистральных газопроводов ГТУ используются в качестве двигателей для привода газоперекачивающих компрессоров. При этом топливом служит газ, отбираемый из магистральной линии.
В стационарной энергетике на тепловых электрических станциях применяются ГТУ в качестве резервных и пиковых источников энергии, а также в составе парогазотурбинных установок (ПГУ). В ПГУ отходящие от ГТУ газы подаются в котёл-утилизатор, где вырабатывается водяной пар, подаваемый в паровую турбину, которая вырабатывает дополнительную мощность.
ГТУ находят применение также в качестве теплофикационных установок. В этом случае газы из турбины подаются в специальный котёл или водяной подогреватель. Уменьшение температуры уходящих газов вызывает значительное возрастание КПД установки, а сама установка оказывается проще и дешевле соответствующей паротурбинной установки.
В промышленности ГТУ широко применяются в доменном производстве для привода воздуходувок, которые подают воздух повышенного давления в печь. При этом топливом для установки служит доменный газ – побочный продукт доменного производства.
В качестве двигателя ГТУ наряду с другими типами двигателей используются на железнодорожном транспорте, в торговом и военно-морском флоте. Автомобиль с газотурбинным двигателем пока ещё находится в стадии разработки.
Таким образом, ГТУ является перспективным и широко распространённым тепловым двигателем.
Выбор оптимальной степени повышения давления
В компрессоре ГТУ
Оптимальная степень повышения давления в компрессоре для выбранной схемы ГТУ определяется из условия обеспечения максимального КПД на расчётном режиме работы установки. Для газотурбинной установки с регенерацией КПД определяется по следующей формуле
, | (1.1) |
где - КПД камеры сгорания; ; - средняя теплоёмкость газов в интервале температур Tc – Td; - средняя теплоёмкость процесса подвода тепла в камере сгорания; - средняя теплоёмкость воздуха в интервале температур Tb – Ta; ; - степень повышения давления в компрессоре; - отношение давлений в турбине; - коэффициент, учитывающий потери давления газа в проточной части установки; - коэффициент, учитывающий потери давления в воздушном тракте между компрессором и турбиной; - коэффициент, учитывающий потери давления в системах всасывания воздуха (перед компрессором) и выхлопа газов (за турбиной); - КПД турбины; - КПД компрессора; - показатель изоэнтропы воздуха в процессе сжатия в компрессоре; - показатель изоэнтропы газов в процессе расширения в турбине.
Методика определения оптимальной степени повышения давления состоит в следующем. По формуле 1.1 определяют КПД установки с определённым интервалом для различных значений степени повышения давления в компрессоре. При этом допустимо пренебречь влиянием изменения теплоёмкости в цикле, т.е. принять . В расчёте принимают . Результаты сводят в таблицу 1.1 и используют для построения зависимости , представленной на рисунке 1.1.
Таблица 1.1.
n(к.с) | λ | n(т) | n(к) | С(рв/рг) | m(в/г) | δ | t | E | η |
0,98 | 0,94 | 0,88 | 0,86 | 0,275 | 1,88 | 3,88 | 0,2709119 | ||
2,82 | 0,335199 | ||||||||
3,76 | 0,3524986 | ||||||||
4,7 | 0,3544298 | ||||||||
5,64 | 0,3498361 | ||||||||
6,58 | 0,3420878 | ||||||||
7,52 | 0,3327124 | ||||||||
8,46 | 0,3224826 | ||||||||
9,4 | 0,3118196 |
Рисунок 1.1.
По построенному графику определяют оптимальную степень повышения давления в компрессоре соответствующую максимальному значению КПД на расчётном режиме работы ГТУ. Данное значение степени повышения давления принимается ε=5 для дальнейших расчётов газотурбинной установки.