Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Почему не выгодно прямое наследование приобретенных признаков




Проблема «наследование — ненаследование приобретенных призаков», примыкающая к задачам отношения наследственности и определенной — неопределенной изменчивости, стояла в самом центре внимания эволюционистов всех времен и направлений.

Еще Аристотель правильно угадал действие основных факторов эволюции, позднее названных мутациями и отбором: «Те органы и организмы, у которых все случайно оказалось целесообразным, выжили, а прочие погибли как неприспособленные» (цит. по [Берг, 1977, с.67]). Более глубоко идея о приспособительной эволюции была проработана Ж.Б. Ламарком, который достаточно убедительно показал, что все организмы в течение жизни приспосабливаются к окружающей среде. При этом изменяются и физические характеристики организма, и поведение — организм приобретает новые свойства. Приобретенные признаки передаются по наследству. Причиной всего этого является, по Ж.Б. Ламарку, «внутреннее стремление совершенству», заложенное Творцом.

Стоявший на материалистических позициях Ч. Дарвин резко отрицал какое-либо «стремление к совершенству», но и ему приходилось делать уступки сторонникам определенной изменчивости, преувеличивать роль «упражнения органов» в эволюции и передаче признаков по наследству. Однако абсолютизация случайности плохо увязывается с очевидностью прогрессивного развития жизни от пробионта до высшего растения или животного, включая человека.

Субстратный подход к изучению эволюции жизни, в основе которого лежит представление о самоорганизации, саморазвитии и самоусложнении живого, оставляет богатую пищу для различных толкований проблемы наследования-ненаследования. Поэтому, поднимаясь до «высоких абстракций» типа «единства организма и среды», очень просто взять на вооружение тезис о наследовании приобретенных признаков как адекватном реагировании организма на изменение условий среды, рассматривая его как адаптивную подстройку генотипа под оптимальный фенотип. (Речь идет о печальных временах доминирования псевдомарксистской диалектики Т.Д. Лысенко в нашей биологии.) Ненамного богаче в естественно-научном смысле и тезис «единства популяции и среды», хотя в философско-методологическом плане он более обоснован.

Что же в данном случае может дать учет энергетического подхода, а вернее, его сочетание с упомянутыми субстратным и информационным подходами? Можно ли попытаться объяснить, почему в эволюции «запрещено» прямое воздействие фенотипа на генотип, чем оно невыгодно? Почему справедлива центральная догма биологии — одна из крупнейших находок биологии нашего века, согласно которой информация с белка на нуклеиновую кислоту передаваться не может? Ведь совершенно очевидно, что адекватное реагирование организма, популяции, экосистемы на условия среды крайне необходимо для сохранения и эволюции всего живого! Например, из-за отсутствия обратной связи от фенотипа к генотипу для эволюции потеряно столько «блестящих» фенотипов, случайно появившихся гениальных находок, не переданных последующим поколениям. В чем же основа для существования такого запрета? Попробуем рассмотреть возможные ответы на основе комплексного подхода, т.е. С+Э+И концепции.

Вспомним, что при формулировке и обсуждении энергетического принципа интенсивного развития мы говорили как об одном из важных путей эволюции об экономии расходования энергии на образование и поддержание биологической структуры. При этом мы подчеркивали, что в прогрессивной эволюции размер генома не возрастает по абсолютной величине и что у старых таксонов он может быть гораздо больше, чем у молодых (достаточно вспомнить земноводных и птиц). Кроме того, акцентировалось внимание на том факте, что относительная доля основного носителя структуры — ДНК (и примыкающей к ней РНК) в клетках более древних прокариот выше, чем у эукариот. И наконец, мы неоднократно обсуждали примеры быстрой потери структуры (и на уровне ДНК, и на уровне целых органов), если она почему-то сталовилась ненужной. Еще раз напомним, что общая тенденция развития в сторону специализации, т.е. интенсификации определенной функции, как правило, сопровождается ослаблением других функций и потерей избыточных структур. Иначе геном раздувался бы до таких размеров, что на его воспроизведение и поддержание уходила бы большая часть энергии, захваченной организмом. А это уже прямое противоречие энергетическим принципам, согласно которым в итоге возрастает именно активная энергия и организм распоряжается ею по своему усмотрению.

Итак, запрет на разбухание генома исходит из энергетики эволюционного развития. И одним из первых под этот запрет попадает наследование приобретенных признаков. Действительно, попробуем оценить, что нужно иметь организму, чтобы унаследовать в поколениях приобретенное родителями. Прежде всего нужно уметь воспринять информацию, суметь оценить ее, принять решение о необходимости запоминания, записать в генотип, а затем подключить к системе воспроизводства информации и проявления в фенотипе.

Рассмотрим для конкретности известный пример — зеленую гусеницу на зеленом листе. По-видимому, зеленая окраска была когда-то приобретена предками гусеницы как полезный признак. Предположим, что это было передано через прямое наследование данного благоприобретения. Что для этого потребовалось бы? Во-первых, нужно было установить полезность приспособительной окраски и выбрать ее тип (т. е. зеленая на зеленом). Но гусеницы не имеют глаз и не встречаются с бабочками: т. е. и оценить, и передать информацию крайне непросто. Отрицательный опыт контакта с птицей тоже не передать в поколениях, ибо такую гусеницу уже съели и потомства от нее не будет. Но пусть все же решение приобрести зеленый пигмент принято. Как его осуществить? Надо «знать» непростую схему реакций синтеза данного пигмента, какие ферменты будут катализировать эти реакции, как синтезировать эти ферменты (скорее всего модифицировать имевшиеся белки) и т. д. Поистине сортирующий признаки демон Максвелла должен быть «дьявольски» изощрен: все знать, оценивать и уметь делать а потому — он должен быть крайне громоздок и являться тяжелой нагрузкой, прежде всего по энергетике для организма. Следовательно, организму для прямого наследования по петле обратной связи необходимо иметь сложную систему иерархически связанных структур типа: воспринимающих информацию, перерабатывающих ее и запоминающих; на следующих этапах — управляющих и исполняющих, а затем вновь оценивающих результат: надо ли закрепить данный признак или уже можно его выбрасывать. Такие сложные информационно-управляющие и исполняющие системы мы и обсуждали на примере высших животных имеющих все перечисленное: рецепторы, нервную систему, высокоорганизованный мозг и исполняющие органы. Все это постепенно развивалось под действием естественного отбора.

Правда, в данном случае необходимо подчеркнут! одно очень существенное обстоятельство: сама сложная система — мозг не имеет сверхстрогого наследования. К примеру, головной мозг человека содержит более 10 млрд нервных клеток. Эти клетки связаны друг с другом, каждая — с десятками и сотнями других — как длительными, так и динамичными, кратковременными связями. Этими связями и определяется работа мозга. Ясно, что закодировать каждую такую связь в генотипе невозможно, хотя бы потому, что у человека число генов составляет несколько миллионов, а числе связей между клетками мозга может превышать сотни миллиардов! Поэтому генетически кодируется не структура мозга во всех деталях, а способ ее образования, да и то лишь в самых общих чертах (подробности см. [Нейфах, 1978]).

И все же, несмотря на это, генотип высших животных в тысячи раз больше по абсолютной величине, чем генотипы прокариот. Считается, что лишь малая часть генома высших организмов содержит структурные гены, кодирующие белок (около 2% у мыши и человека), а остальная часть связана с работой регуляторных генов. Именно такое изменение генома можно принимать за один из немногих сформулированных принципов его эволюционных изменений в макроэволюции: «...при прогрессивной эволюции фенотипа, т. е. при возрастании морфофизиологической сложности организма, доля структурных последовательностей в геноме снижается за счет увеличения неструктурных, очевидно, регуляторных» [Медников, 1982, с. 80].

Только благодаря развитию сложной системы иерархически управляемых и управляющих структур, возглавляемых мозгом, высшие организмы сумели преодолеть запрет центральной догмы биологии: они с успехом передают свой накопленный опыт новым поколениям через воспитание и обучение как индивидуальное, так и коллективное. Энергетическую выгоду такой передачи признаков (известный теоретик эволюции Э. Майр называет ее «странным образом ламаркистской») мы обсуждали в гл. 8 и далее. С позиций С + Э + И подхода она ничуть не странна: она позволяет организму (популяции) более адекватно реагировать на условия среды, а значит, и совершенствоваться, и, что особенно важно,— без избыточного раздувания генотипа.

В связи с этим неизбежно возникает вопрос: а как же обходятся «бедные», примитивные прокариоты (и низшие эукариоты), каким образом «ухитряются» они адекватно реагировать на динамику условий существования? Ведь не имея сложных иерархических структур, способных автономно и слаженно работать по схеме: восприятие, оценка, исполнение, для передачи приобретенных признаков по наследству понадобилось бы закодировать в генотипе каждый возможный шаг в индивидуальном развитии клетки. А это и означает, что геном прокариотпой клетки или низшей эукариотной с таким типом наследования был бы гораздо больше генома высших организмов, чего не отмечалось ни разу. Более того, известно, что у прокариот большая часть генома состоит из структурных генов и связанных с ними, а у вирусов эта доля может превышать 90%. Итак, каким же образом обходился и обходится запрет центральной догмы биологии, начиная с самых низших уровней организации? Перечислим некоторые «маленькие хитрости» (а иногда и немалые), которые были взяты на вооружение живой природой.

Первым (и очень изящным!) способом приспособительного реагирования генотипа через фенотип на условия окружающей среды можно назвать способ плазмидной (вирусной) передачи генов на уровне прокариот. Его можно считать в определенном смысле универсальным: он работает и по вертикали (передача от предков к потомкам), и по горизонтали (в пределах одного поколения). Им могут быть охвачены как ближайшие родственники, так и отдаленные соседи из других семейств. Можно даже утверждать, что этот путь передачи генетической информации от клетки к клетке способен осуществляться не только «вверх» по вертикали, по и «вниз», т. е. если информация не нужна, то она не передается.

И здесь не надо придумывать ничего экстраординарного — здесь везде работает естественный отбор, который достаточно строго подчиняется действию энергетических принципов. А плазмиды являются основным поставщиком разнообразия и создают материал для работы естественного отбора. Они представляют собой внехромосомные кольцевые молекулы ДНК, способные автономно реплицироваться (воспроизводить себя) и передаваться в дочерние бактерии при делении клеток. Для многих плазмид (но не для всех) характерна способность самостоятельно переходить из одних бактериальных клеток в другие, от донора к реципиенту. Это свойство называется транспортабельностью, или трансмиссивностью. Плазмиды могут ассоциироваться друг с другом, и тогда нетранспортабельная плазмида способна «переехать» в другую клетку на плазмиде-перепосчике.

Плазмиды могут находиться в бактерии как в автономном состоянии, так и интегрироваться с хромосомой. При выходе из хромосомы (дезинтеграции) они способны «прихватить» с собой часть хромосомных генов.

Плазмиды, принося новые блоки генов в клетку, позволяют ей осваивать новые экологические ниши и успешно развиваться при ухудшении условий среды, например при действии внешних ядов — ингибиторов. Само обнаружение плазмид в 50-е годы нашего века как раз и было связано с неожиданной для человека быстро возникшей устойчивостью патогенных бактерии к антибиотикам. Практически мгновенное распространение лекарственной устойчивости среди бактерий, да еще множественные ее формы (т.е. устойчивость к нескольким антибиотикам), буквально посеяли среди химиотерапевтов панику, которая в наше время сменилась тихой растерянностью. Пока, вплоть до настоящего времени мы пытаемся побеждать очень дорогой ценой — создаем все новые и новые антибиотики. Это не лучший путь, и его недостатки мы обсуждали на страницах этой книги. Сейчас лишь подчеркнем, что С+Э подход позволяет использовать общебиологические законы для разработки стратегии более выгодной (менее энергоемкой) борьбы с лекарственной устойчивостью патогенных бактерий. Она основывается на использовании стабилизирующей формы естественного отбора: R-плазмиды резко уменьшаются в численности в популяциях бактерий, если они не нужны. Например, антибиотик карбеницилин оказалось возможным вновь использовать через два года, так как после прекращения его применения резко упала частота появления (выделения) резистентных к нему штаммов синегнойной палочки [Lowbury, 1973; цит.по.: Гольдфарб, 1980].

Другой способ перегруппировки генетического материала и его обновления связан с наличием в клетках прокариот (и эукариот) мигрирующих генетических элементов, способных к самостоятельному перемещению в пределах клеточного генома. Называют их по-разному: подвижные, мобильные, прыгающие гены и пр. Эти элементы могут включаться как в главные хромосомные репликоны, так и в дополнительные (плазмиды, эписомы фаги), вызывая их мутации, а также могут осуществлять обмен генов между различными генетическими системами. Это приводит к резкому увеличению рекомбинационных возможностей генотипа клеток.

Что касается эукариотных клеток, то они имеют мигрирующие генетические элементы как с малым (100–300) числом пар нуклеотидов, так и с большим числом повторов (до 10000 оснований). В последнее время они обнаружены у большинства таксонов: от одноклеточных грибов-дрожжей до человека. Например, в геномах млекопитающих широко распространены так называемые вездесущие короткие повторы. Они на самом деле короткие — до 100–300 нуклеотидых пар. Обнаружены они в геномах мыши и человека. Поскольку становится очевидным, что подвижные генетические элементы не экзотика, а обыденное явление, что хромосомы буквально «пестрят» этими фрагментами, то естественно возникает вопрос: а не слишком ли они «дороги» для клетки? Иногда на мобильные гены приходится по 1/4 от всей синтезируемой клеткой РНК. Избавиться от них клетка не может. Одно из распространенных мнений, что это — та самая «экзотическая» нуклеиновая кислота или «генетический паразит», который хочет размножаться даже во вред клетке. Однако, по видимому, более корректно говорить не о генетическом паразите, а о симбионте или, еще точнее, о дополнении к геному, который потому и удерживается клеткой, что помогает ей в определенных условиях выжить. Если бы эти элементы были бы только лишней нагрузкой, то они быстро элиминировались бы из популяции. И неважно, что несущая их клетка не может избавиться от них. Популяция под действием естественного отбора быстро очистилась бы от клеток с избыточной нагрузкой. И для таких микроэволюционных событий (очищений от избыточных структур в соответствии с энергетическими принципами), особенно в популяциях быстро размножающихся про- и эукариот, понадобились бы считанные недели и месяцы. А коль этого не происходит, то следует обратить внимание на полезность мобильных элементов для клетки популяции.

Как и бактериальные транспозоны, мобильные гены эукариот способны влиять на активность генов, в соседство с которыми они попали, перепрыгивая с места на место и меняя свою численность. Эти мобильные гены иногда обнаруживают большое сходство с прокариотными транспозонами и ретровирусами птиц и млекопитающих. При перемещениях в геноме они также могут «прихватить с собой» соседние структурные гены. Известно, что большая часть нестабильных мутаций (мутаций с высокой частотой возврата к нормальному фенотипу) связана с прыгающими генами.

Таким образом, мобильные генетические элементы и про- и эукариот, резко увеличивая рекомбинационные способности, позволяют клетками и популяциям адекватно реагировать на условия среды без прямого наследования приобретенных признаков. И адекватность эта, как мы видели, достигается «малой кровью», т.е. относительно низкой долей затрат на дополнительные структуры.

Мы не говорили о способе рекомбинации генетического материала с помощью половых процессов не потому, что он несущественен, а потому, что он наиболее изучен и общеизвестен. Ознакомление с другими механизмами, обеспечивающими приспособленность популяций низших организмов к условиям среды, показывает, что адекватное реагирование возможно и без прямого наследования полезных признаков. Эффективность его обеспечивается у популяций низших организмов за счет быстрой смены поколений (т.е. через действие отбора) и рекомбинации прежде всего дополнительного генетического материала и с его помощью — основного генома. На этом уровне вполне хватает тех механизмов неопределенной изменчивости, которые мы только что рассматривали. Определенная, т.е. направленная изменчивость оказывается ненужной, ибо она привела бы к резкому разбуханию генотипа. И потому она здесь запрещена, хотя и обеспечивала бы наиболее быстрое и адекватное реагирование, приспособление организмов к окружающей среде.

На магистральном направлении эволюции хищников она проявляется в виде воспитания и обучения потомков. Удлинение сроков жизни и уменьшение числа потомков, как мы знаем, характерно для магистрального направления эволюции, так как на этом пути экономится лимитирующее вещество и интенсивность работы биологических структур возрастает. Но именно длинные интервалы жизни и малое число потомков резко снижают эффективность действия отбора, а с ним и обнаруживает недостаточность неопределенной изменчивости. И в этих условиях возрастает роль информационно управляющих структур, прежде всего мозга, которые способны оценивать и запоминать информацию без строгого генетического контроля. Отсюда и возрастание роли направленной определенной изменчивости, «такой ламаркистской по сути». Наиболее ярко она проявляется у человека в его общественном поведении, в системе коллективного образования и воспитания. Естественно, что здесь работают уже не биологические, а социальные законы, человек перешел от биологической к культурной и экономической эволюции, он не пассивно подстраивается к среде, а активно ее перестраивает (это уже выходит за рамки нашего биологического рассмотрения).





Поделиться с друзьями:


Дата добавления: 2016-11-03; Мы поможем в написании ваших работ!; просмотров: 275 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2502 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.