, , ,
1.
1. | ||
, , | . ( 2): | |
... | . | |
, . . , . | 1.1 1.2 | |
. - | ||
. | ||
. - | ||
. - | ||
. - | ||
() : . | 1.2 1.3 | |
() : , . . | 1.2 1.4 | |
. . | ||
, . | 1.1 3.1 | |
- | " ": | 3.1 |
- | 3.1 | |
- | . | 3.1 |
, , , . , , , , , , . , (, ..) , , 1800, , , 1800. | 1.3 | |
, . | 1.7 | |
, : grad U= =- | 1.7 | |
, . , .. . | 1.2 1.4 | |
( ) | ; , . | 1.2 1.4 |
- | 1.2 1.4 | |
- | 1.2 1.4 | |
- | 1.2 1.4 | |
- | 1.2 1.4 | |
- | 1.2 1.4 | |
- | 1.2 1.4 | |
- | 0 90. 90 180. | 1.2 1.3 |
1.2 1.3 | ||
- | 1.2 1.3 | |
- | 1.2 1.3 | |
1.2 1.3 | ||
- | 1.2 1.3 | |
1.7 3.1 | ||
, , ; . | ||
1.3 | ||
1.2 | ||
. | ||
- ( ) | . | |
( ) | , . | 1.4 |
=0 .. . . I - (i = 1): . | 1.3 | |
, | 1.3 | |
.. : , , , ( ). | 1.3 | |
, : . | 1.4 | |
- | 1.3 | |
- | 3.1 | |
, . | 3.1 | |
() | 1.3 3.1 |
|
|
|
|
() | 3.1 | |
: ( ) , . , | 1.5 | |
: : , . | 1.5 | |
. () , , : E ' = " . ( ): | 1.7 | |
( ) | , L , .. , . , - . | 1.7 |
. - | ||
, : | 1.3 | |
- | 1.3 1.5 | |
, .. , : | 1.3 1.5 | |
(, , ), , | 1.2 | |
.. | . | |
, . .. . . , . .., , .. | 1.1 1.2 | |
, . | 1.3 | |
1.3 | ||
( ) | 1.3 | |
, , . | 1.3 3.1 | |
, m = γ m 0 | 3.1 | |
, | 1.1 | |
- - . | 1.1 | |
, , ( = 3,108 /). V << - 0. | 1.1 | |
() | v, c. . . | 3.1 |
- | . | |
. | ||
, ( ). | 1.4 | |
, : | 1.4 | |
- : | 1.4 | |
.. | 1.4 | |
, , . | 1.4 | |
1.4 | ||
1.4 | ||
Z, , Z , | 1.4 | |
Z, , | 1.4 | |
, , Z , | 1.4 | |
() | Z, , Z , | 1.4 |
Z, , | 1.4 | |
1.4 | ||
: , | 1.4 | |
Z : . | 1.4 | |
: | 1.6 | |
. | 1.6 | |
. | 1.6 | |
. - | ||
. - | ||
. - | ||
( ), , . . : , , .., , . . - | 1.1 | |
- | .. (.. ) .. | 1.2 |
. - | ||
. | ||
' , t = t ', x = x ' + v x t, y = y', | 1.3 | |
() | ' x = g(x' + vt'), y = y', z = z', ; | 3.1 |
: , , , . , , | 1.7 | |
( ). | 1.3 | |
() | : , . , - , , z, t - ', ', z', t' c '; . | 3.1 |
. | ||
. | 1.3 | |
, . | 1.1 3.1 | |
- | ( ) | 1.1 3.1 |
- | ( ). | 1.1 3.1 |
- | . | 1.1 3.1 |
- | (). | 1.1 3.1 |
. | ||
, .. , () , . | 1.2 | |
, : . | 1.6 | |
( ) . | 1.6 | |
, , ( ) . | 1.6 | |
, - , - : . | 1.3 | |
. | 1.3 | |
1.3 | ||
, . . . . | 1.3 | |
, , , 1. (, R ~ ¥). 2. (, R ~ 1018 ). 3. (, R ~ ¥). 4. , , (, R ~ 1015 ). | 1.3 | |
. | ||
. | ||
(, ). | 1.3 | |
, , . | 1.3 | |
1.3 | ||
1.3 | ||
1.3 | ||
1.3 | ||
, . . | 1.3 | |
, . ( ), : - , ; - , ; - , . | 1.5 1.7 | |
, .. | 1.5 | |
, , , . | 1.3 | |
, . | 1.3 | |
, . | 1.3 | |
() | , , , , . , , , - . | 1.3 |
. | ||
, . | 1.3 | |
, . | 1.2 | |
() | 1.2 | |
() | 1.2 | |
() | 1.2 | |
1.2 | ||
() | 1.2 |
|
|
|
|
|
|
() | 1.2 | |
, . . | 1.1 | |
. | ||
( ), . | 1.3 | |
Á Á , , m d : Á = Á + md 2. | 1.4 |
() | (. ) | 3.1 |
, : ) L (x,y,z) = 0 ) y = y (x). (). | 1.2 | |
. - | ||
- | , ... . , | 1.2 |
- | , . | 1.2 |
: | 1.7 | |
: | 1.7 | |
1.7 | ||
. | 1.7 | |
. | ||
. | ||
. | ||
. | ||
. | ||
. | ||
. | ||
. | ||
. | ||
. - | ||
. - | ||
. - | ||
. - | ||
. - | ||
. - | ||
. | 1.2 | |
() | 1.2 | |
() | 1.2 |
() | 1.2 | |
- | 1.2 | |
1.3 | ||
, . | 1.2 | |
() | 1.2 | |
() | 1.2 | |
: | 1.2 | |
() | : . | 1.2 |
"" (), , .. . - , (, , , ). , (.). | 1.1 | |
. | 3.1 | |
() . | 1.5 | |
. | ||
, . | 1.1 3.1 | |
, - .. ... , , . i f ..: i = f | 1.1 | |
, . | 1.7 | |
: . | 1.7 | |
, , , , , , . , . , . | 1.7 | |
1.7 | ||
3.1 | ||
1.7 | ||
. = K + U | 1.7 | |
m = m 0 , = 0 = m 0 c 2 . | 3.1 | |
: E = K + U + E . | 1.7 | |
: = mc 2. | 3.1 | |
, . , , . | 1.7 | |
1.3 1.7 | ||
1.7 | ||
U = mgy. | 1.7 | |
, ∆ = ∆ m × c 2, . | 1.7 |