Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дифференциальные зависимости между элементами изгиба балки




Между интенсивностью распределенной нагрузки, перерезывающей силой и изгибающим моментом существуют дифференциальные зависимости, установленные русским ученым Д.И. Журавским и немецким исследователем М. Шведлером.

Рисунок 8.17 – К определению дифференциальных зависимостей между элементами изгиба  
Рассмотрим балку, загруженную произвольно распределенной нагрузкой q(х), которая описывается одной аналитической зависимостью (рис. 8.17, а). В сечении х выделим двумя параллельными сечениями бесконечно малый элемент dx (рис. 8.17, б). На него действуют: распределенная нагрузка интенсивностью q, которую на бесконечно малой длине элемента dx можно считать постоянной; перерезывающая сила и изгибающий момент М, которые при изменении длины на величину dx получают малые приращения d и .

Воспользуемся условие статики для элемента балки dx:

т.е. производная по перерезывающей силе в поперечном сечении по линейной координате х равна интенсивности распределенной нагрузки q в том же сечении. Напомним из высшей математики, что производная функции по координате имеет геометрический смысл тангенса угла наклона касательной к функции по отношению к горизонтальной оси. А значит при криволинейной функции , где α-угол между касательной к и горизонтальной линии, параллельной к оси х.

2. Для моментов принимаем такое же правило знаков, что и в определении реакций (см. п. 8.2):

откуда, пренебрегая слагаемыми второго порядка малости (подчеркнуто), получаем:

т.е. производная от изгибающего момента в сечении равна перерезывающей силе в том же сечении. Аналогично вышеуказанному, тангенс угла наклона касательной к криволинейной функции М(х) к горизонтальной оси соответствует производной

Подставляя (8.9) в (8.8) получаем:

т.е. вторая производная от изгибающего момента в сечении равна интенсивности распределенной нагрузки в том же сечении.

Зависимости (8.9) и (8.10) составляют суть теоремы Журавского-Шведлера: первая производная от изгибающего момента равна перерезывающей силе в сечении балки, а вторая производная – интенсивности распределенной нагрузки в том же сечении.

Дифференциальные зависимости между элементами изгиба (8.8)-(8.10) используются при согласовании между собой эпюр и М:

1. На участках балки, на которых перерезывающая сила положительна, изгибающий момент возрастает (слева направо), а на участках, на которых она отрицательна, убывает.

2. Чем больше по абсолютной величине значение перерезывающей силы , тем круче линия, ограничивающая эпюру М. Отсюда следует, что на участке балки с возрастающими (в алгебраическом смысле) слева направо значениями линия, ограничивающая эпюру М, обращена выпуклостью вниз, а с убывающими – выпуклостью вверх.

3. На участке балки, на котором перерезывающая сила имеет постоянное значение, эпюра М ограничена прямой линией.

4. Если на границе соседних участков балки эпюра не имеет скачка, то линии, ограничивающие эпюру М на этих участках, сопрягаются без перелома, т.е. имеют в точке сопряжения общую касательную.

5. Если на границе соседних участков балки на эпюре имеется скачок, то линии, ограничивающие эпюру М на этих участках, сопрягаются с переломами, т.е. не имеют в точке сопряжения общей касательной.

6. Изгибающий момент достигает максимума или минимума в сечениях балки, в которых перерезывающая сила равна нулю; касательная к линии, ограничивающая эпюру М, в этом сечении параллельна оси эпюры.

7. На участках действия распределенной нагрузки q перерезывающие силы изменяются по длине балки (при этом, если интенсивность q постоянна, то перерезывающая сила изменяется по линейному закону); эпюра изгибающих моментов на этих участках ограничены кривыми.

8. На участках балки, на которых распределенная нагрузка отсутствует, перерезывающие силы постоянны, а изгибающие моменты меняются по линейному закону.

9. На участках, где положительный изгибающий момент возрастает, отрицательная перерезывающая сила тоже возрастает; там, где положительный изгибающий момент убывает, положительная перерезывающая сила возрастает.

10. В местах, где к балке приложена сосредоточенная сила, на эпюре будет скачок, равный по величине этой силе, а на эпюре М будет иметь место перелом.

11. Внешний сосредоточенный момент на характере эпюры не отразится, а ордината эпюры М в этом месте изменится скачком, равным по величине этому моменту.

12. Эпюра М всегда обращена выпуклостью навстречу распределенной нагрузке, что следует из формулы (8.10) и совпадения правил знаков для изгибающих моментов и кривизны линии очертания эпюры.

13. Начальные и конечные на эпюрах и М должны совпадать со значениями сосредоточенных сил (в том числе реакций) с учетом правила знаков.

Согласование эпюр и М между собой с учетом типичных случаев внешней нагрузки (сосредоточенная и распределенная нагрузка, внешний момент) иллюстрируется следующей таблицей:

Таблица 8.1 – Согласование эпюр и М между собой





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 476 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.