Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пентозофосфатный(фосфоэмоконатный) глюкуронатный и полиольный пути катаболизма глюкозы. Осн.прод-ты. Биолог. знач




Пентозофосфатный путь; био. роль. Путь прямого окисления углеводов. 2 пути окисления: классич.-цикл. Трикарб.п. и пентозный нач-я со стадии образ-ия гексозомонофосфата. Если глюкозо-6-фосфат - > фрукт.1-6 дифосфат. Далее распад углевод. Пр-ит по обычному пути с образ-м пировиногр-й к-ты - > Ацетил КоРо -> сгорает в цикле Кребса.

Если присоединение пр-ит, то фосфорилиров-я глюкоза может подвергаться прямому окислению до фосфопентоз. В норме для питозн. ц. кол-во глюкозы – небольшое.Большое знач. в обм. в-в он поставляет восстановл. НАДФ (НАДФН2), необходимый для биосинтеза ЖК, холестерина и т.д. За счет пект. ц. =50% потребности орг-зма в НАДФН2.2-я ф-я пент. ц.: поставление пентофостаты для синтеза нукл. к-т и многих коферм.Пент. ц. нач-я с окисл-го декарбоксилирования – ок-я стадия, 2-я - неокисл-я превращ-е пентозофосфатов с обр-ем исходного глюкозо-6-фосфата (транскетолазная и трансальдолазная р-и).Глюкоронатный путь превращ. глюкозы, биолог-я роль.Глюкоронат. путь – образ. из глюкозы гиалуроновой к-ты нач-ся с изомеризации, глюкоза-6-фосфат в глюкозу -1-фосфат аоследн.соед-ся с УТФ, а обр-ся УДФ-глюкоза окисл-ся с помощью специфич. НАД зависим.дегидрогеназы до УДФ глюкурановой к-ты. Послед. в соедин. с аминосахарами обр. дисахарид-е звенья полимеризующиеся в длинные цепи специфич. гликозамингликанов соединит. ткани биол. секретов, рецепторов. Кроме того, в почках и печени глюкуронов-я к-та выполняет спец. функцию – используется как коньюгат для обезвреживания.Полиольный путь – использование глюкозы разными тканями для различной деят-сти в нек-рых Кл-х (семенные пузырьки и канальцевые клетки мозгового вещества почек) большая часть поступала в клетки глюкозы вместо типичного фосфолириров. подвергается восстан. с помощью альзозаредуктазы до сорбитола в дальнейшем окисляемого до фруктозы, что составляют альдоредуктазный или полиольный путь катабализма глюкозы.

Глюкоза -> сорбитол + НАДФ + НАД + НАДН2 -> фруктоза

В клетках семенных пузырьков этот путь обеспечивает сперматозоиды основным ист-м Е – фруктозой, а в клетках мозгового в-ва почек предотвращает дегидратацию и нарушение реабсорбир-й ф-ции этих Кл-к.

При патологических процессахх -> гипергликомии – осмотич. повреждение клеток сосудистой стенки хрусталика, сетчатки глаза.

Сахарный диабет – нарушение использования глюкозы (глюкузурия (почечный порог 10 м моль (л)) недостаточная ресорбция глюкозы в почечных канальцах.

 

25. ГЛЮКОНЕОГЕНЕЗ -синтез Глю из неспец.ком-тов(в гепатоцитах и в Кл.почечных канальцев).Субстрат-АК(распад Б.плазмы крови)-истинный глюк-ез;молочная к-та,лактат –ложный,глицерин(распад жиров).Глюк-ез-обратный гликолиз.Сущ-т обходные рц глюконеогенеза(1,3,10 рц гликолиза).Обход 10 рц в два этапа:1)карбоксилирование пирувата ->оксалацетать 1ЩУК 2)декарбоксилирование оксалацетата-> фосфоенолпируват. Обход 3рц(необходимы спец.ф-ты –фосфатазы(глюкоза-6-фосфатаза, фруктоза-6-фосфатаза,карбоксилаза).Фруктоза+дифосфат+Н2О->фруктоза-6-фосфат+фосфат. В 1рц аналогично:глюкоза-6-фосфат+Н2О

Цикл Кори:при активной мышечной работе треб-ся Е, первоначально извлекается в ходе распада гликогена до лактата, он всасывается в кровь с поступает в печёночную ткань где из нее обр-ся глюкоза в ходе глюконеогенеза. Глю из печени с кровью достигает скелетных мышц где расходуется на обр-ие Е и откладывается в виде гликогена. Глю внорме 3,3 – 4,0 ммоль\лГЛЮКОНЕОГЕНЕЗ, процесс образования глюкозы в животном организме (преимущественно в печени) из белков, жиров и других веществ, отличных от углеводов, напр., из глицерина.

 

26. Инсулин выробат-я поджелуд. железой. Молекула инсулина,содержащая 51 аминокислоту, состоит из двух полипептидных цепей, соединенных дисульфидными мостиками. Инсулин образуется в В-клетках островков Лангерганса. Проинсулин превращается в инсулин путем частичного протеолиза. Синтез и секреция инсулина регулируется глюкозой. Различают: 1. свободный инсулин – вступает во взаимодействие с антителами и стимулирует усвоение глюкозы мышечной и жировой тканью; 2. связанный инсулин – активен только к жировой ткани; 3. форма А инсулина – ответ на быструю срочную потребность организма в инсулине.Действие инсулина начинается с его связывание со специфическим гликопротеиновым рецептором на поверхности клетки-мешени. Рецепторы инсулина обнаружены почти во всех типах клеток, но больше всего в гепатоцитах и клетках жировой ткани. Инсулин увеличивает проницаемость плазматической мембраны для глюкозы. Многие клетки нуждаются в инсулине для переноса глюкозы через мембрану внутрь клетки. Инсулин стимулирует синтез гликогена в печени и мышцах, синтез жиров в печени и жировой ткани, синтез белков в печени и других органах. Все это направлено на ускорение использование глюкозы, что приводит к снижению концентрации глюкозы в крови. Концентрация аминокислот также снижается, а концентрация липопротеинов увеличивается. Для многочисленных изменений обмена, наблюдаемых при введении инсулина, не удается установить причинно-следственные отношения. При низкой концентрации глюкозы инсулин перестает выделяться в кровь.

 

27. Инсулин повышает содержание глюкозы в крови, снижение глюкозы вызывает замедление секреции инсулина. Инсулин стимулирует усвоение глюкозы мышечной и жировой тканями – это свободный инсулин. При недостатки инсулина возникает сахарный диабет. Инсулин повышает проницаемость мембраны для глюкозы и аминокислот. Глюкагон – гипергликемичный фактор, обусловлен распадом гликогена. Органы-мишени для глюкагона – печень, миокард, жировая ткань. Секреция глюкагона контролируется концентрацией глюкозы по принципу обратной связи. Глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Кортизол, при его введении резко повышается концентрация глюкозы в крови, следовательно, глюкоза образуется из аминокислот. Адреналин, сосудосуживающее действие введения его в организм вызывает резкое повышение уровня сахара в крови (обусловленное распадом гликогена в печени и мышцах). Адреналин быстро разрушается и с мочой выделяется.

 

28Липиды – разнородные по химическому строению вещества. Липиды являются основными компонентами биологической мембраны, энергетический резерв, создание защитного водоотталкивающего и термоизоляционного покрова у животных и растений, защита органов и тканей от механических воздействий.

Классификация – сложные и простые липиды. Простые- это вещества, молекулы которых состоят только из остатков жирных кислот (альдегидов) и спиртов. К ним относятся жиры(триглицериды и другие нейтральные глицериды). Сложные – это производные ортофосфорной кислоты(фосфолипиды) и липиды, содержащие остатки сахаров (гликолепиды). К ним относятся стерины и стериды. Если животная и растительная ткань обрабатывается одним илиесколькими растворами(хлороформ, бензол), то некоторая часть материала переходит в раствор. Большинство липидов имеет некоторые общие структурные особенности, обуславливающие их биологически важные свойства и сходную растворимость.

 

29. Если жирными кислотами эстерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом. Жирные кислоты в триглицеридах могут быть насыщенными и ненасыщенными. Чаще среди жирных кислот встречаются пальмитиновая, стеариновая и олеиновая кислоты. Животные жиры содержат значительное количество насыщенных жирных кислот, благодаря чему они при комнатной температуре тверды, а содержащие большое количество ненасыщенных кислот – жидкие.

 

32. Фосфолипидиды как источники внеклеточных медиатторов. Роль мембранных ферментов в генерации эйкозанойдов. Простагландины. Тромбоксаны. Лейкотриены. Образование, био.роль. ЦОГ, ЦОГ-1, ЦОГ-2. Био.роль ингибирования. Эйкозаноиды- бав, синтезир. Большинством Кл-к из ЖК. Вкл. В себя простогландины, тромбоксаны, лейкотриены. Это высокоактивные регуляторы кл. ф-й, гормоны местного действия. Влияют на продуцирующие их кл. по аутокринному мех., на окруж. Кл., по парокринному. Уч-ют в рег-ции АД, состояния бронхов, кишечника, матки. Участвуют в развитии воспалит. Пр-са. Обуславливают признаки восспаления(боль, отек, лихорадка) избыточная секреция- бронхиальная астма, аллергические реакции. Тромбогексан синтез-ся в тромбоцитах, стимулирует их агрегацию при образ-ии тромба. Ферменты катализирующие синтез простогландинов PGH2синтаза, тромбоксансинтаза, простоциклинсинтаза.Цог1 конститутивный фермент обеспечивает физиолог ф-и кл. подавляет акт-сть фосфолипазы. ЦОГ2 индуцированный фактор выд-ся при воспалениях вырабатывается макрофагами, лейкоцитами и эндотелиал. Кл.пиридоксаль, пиридоксамин, антидерматитный).Источники поступления: нек-рое кол-во синтез-ся кишечной флорой; яйца, печень, молоко, зеленый перец, морковь, пшеница, дрожжи.

Активн. формы: пиридоксин, пиридоксаль, пиридоксамин.

Биохимич р-ции всасывания в тонком кишечнике; пиридоксин, пиридоксаль, пиридоксамин проникают через эпителий путем диффузии – ткани ч\з кровь – клетки – превращение в коферменты: пиридоксальфосфат и пиридоксаминилфосфат. Их распад: дефосфолирирования и окисления в тканях.

Проявление недостаточности: повышенная возбудимость ЦНС, судороги, поражение кожи.

32. Фосфолипиды – это разнообразная группа липидов, содержащих в своем составе остаток фосфорной кислоты. Фосфолипиды делят на глицерофосфолипиды, основу которых составляет трехатомный спирт глицерол, и сфингофосфолипиды – производные аминоспирта сфингозина. Фосфолипиды имеют амфифильные свойства и различные полярные группы. Некоторые фосфолипиды участвуют в передаче гормонального сигнала в клетке. Сфингомиелины являются фосфолипидами, формирующими структуру миелиновых оболочек и др. мембранных структур нервных клеток.

 

33. Сфинголипиды, сфингомиелины наиболее распространенные, нах-ся в мембранах животных растительных клетках. Особенно богата ими нервная ткань, также ткань почек, печени. Сфингомиелины – основные компоненты миелина и мембранклеток мозга и нервной ткани. Сфингомиелины имеют амфифильные свойства, обусловленные, с одной стороны, радикалом жирной кислоты и алифатической цепью самого сфингозина, а с другой – полярной областью фосфорилхолина. Гликолипиды. Церамиды – основа большой группы липидов – гликолипидов. Гликолипиды находяться в основном в мембранах клеток нервной ткани. Гликолипиды выделяют три группы – цереброзиды, сульфатиды и ганглиозиды. Их название указывает на ткани, откуда они впервые были выделены. Продукт взаимодействия сфингозима и жирной кислоты называется церамид. Сфингозины, состоящие из 18 атомов углерода, содержит гидроксильные группы и аминогруппы. Сфингозин образует большую группу липидов, в которых жирная кислота связана с ним через аминогруппу.

 

34. Холестерин, строение. Локализация синтеза, биороль,. Холестерин — аминоспирт сфингозин, сод. жир, к-ты. в 17 полож. цепь с метильн. гр., в 3 полож. гидрокс. гр. Мож. сущ.: 1. со; своё. гидр. тр. (в мемб.) 2. в виде эфира — когда по месту гндрок.ф. прис. ВЖк=холестернд. (в цитопл.). Ф-ии: 1. роль в мемб.кл.—располож. м/у мол. фосфолнпида, т.о. что его гидрокс. головка взаимод. с| пол. гол. фосфолна, ядро распол. м/у углеродными цепями ЖК| фосфолипидов мемб. 2. Из дегидрохолестернна в коже обр. вит. di. J. обр. кортикостерон и пол. горм. 4. В гепатоцитах из хол. обр. желчные к-ты (холевая и дсзоксихолевая uj Выдел, в киш. и участв. в перев. и всас. липидов. 5. гр. лег.М. КатехФламииы Предшественником гормонов моз-го в-ва надпочечников явл-ся тирозин, подверг-ся в процессе обмена гндроксилнрования, декарбоксилирования и метилнрования с участием соответствующих ферментов. Катехоламнны - класс орган-ких вещ-в, обладающих сильным биолоппескнм эффектом: оказывают мощное сосудосуживающее действие, вызывая повышение кровяного давления (что сходно с цействнем симпатической нервной системы); оказывают большое < влияние на обмен углеводов в орган-ме в частности введение адреналина вызывает резкое повышение уровня сахара в крови, что обусловлено ускорением распада гликогена в печени и мышцах под действием фермента фосфорилазы. Адреналин, как н глюкагон, активирует фосфорилизу не прямо, а через систему аденилатциклаза - цАМФ-протеинкиназа. Гшергликемический эффект норадрена1в«а значительно ниже (примерно 5% от цейсгвия адреналина). Параллельно отмечаются накопление гексозофосфатов в тканях, в частности в мышцах, падение (конц. неорганического фосфата и увеличение уровня ненасыщенных жирных кислот в плазме кровн Адреналин и иорадреналин быстро распадаются в орг-ме, и с мочой выделяются неактивные продукты их обмена, главным образом в ^ 3-метилен-4-оксим1«ндальноП кислоты, оксоадренохрома, метоксиадреналина.

 

35.В-окислениеВЖК. Это специфический путь катаболизма жк, при котором от карбоксильного конца жк последовательно отделяется по 2 атома углерода в виде ацетил-КоА. основной источник энергии для синтеза АТФ по мех-му фосфорилирования. Протекает в матриксе митохондрий только в аэробных условиях. Скорость регулируется потребностью кл. в энергии.

Кетогенез:

 

37. Переваривание липидов пище происходит в кишечнике. Основной процесс переваривания происходит в тонкой кишке. Переваривание жиров – гидролиз жиров панкриотической липазы. Кроме жиров с пищей поступают фосфолипиды, эфиры холестерола. При стеаторие нарушается всасывание жирорастворимых витоманиов и незаменимых жирных кислот и, поэтому при длительно текущей стеаторее развиваеться недостаточность этих незаменимых факторов питания соответствующими клиническими симптомами. Стеатория – это нарушение перевариваия и всасывания жиров.

Основный продукты гидролиза после всасывания подвергаются ресинтезу и последующей упаковки в хиломикроны в клетках слизистых оболочках кишечника. Основной процесс переваривания происходит в тонкой кишке. Так как жиры - нерастворимые в водесоединения, то они могут подвергаться действию ферментов растворенных только на границе разделов фаз вода/жир. Оптимальное значение PH для панкриотической липазы равно 8 достигается путём нейтрализации кислого содержимого. Поступающего из желудка. Выделяющийся углекислый газ способствует дополнительному перемешиванию содержимого тонкой кишки. Панкриотическая липаза выделяется в полость тонкой кишки из поджелудочной железы вместе с белком колипазой.

 

38. Всасывание- продукты гидролиза липидов –жирные кислоты с длинным углеводородным радикалом, 2-моноацилглицеролы, халестеролы, а так же соли желчных кислот образуют в просвете кишечника структуры, называемые смешанными мицелами. Мицеллы сближаются со щёточной коёмой клеток слизистой оболочки тонкого кишечника и липидные компоненты мицелл диффундируют через мембраны внутрь клеток. Вместе с продуктами гидролиза липидов всасываются жирорастворимые витамины A,D,E,K и соли желчных кислот. Желчные кислоты далее попадают через воротную вену к печень, из печени вновь секретируются в желчный пузырь и далее опять участвуют в эмульгировании жиров.

 

40. Типы липопротеинов имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Некоторые апопротеины интергальные и не могут быть отделены от липо протеина, а другие могут свободно переноситься от одного типа липопротеина к другому. Гидрофильный слой образован белками, котрые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестиролом. Липопротеины очень низкой плотности (ЛПОНП) – место образования является клетки печени, плотность от 0,96 до 1,00 г/мл; функции – транспорт липидов синтезируемых в печени. Липопротеины низкой плотности – местом образования является кровь; функция – транспорт холестиролов в ткани. Липопротениы высокой плотности- место образования является клетки печени; функция – удаление избытка холестирола из других липоротеинов и клеток.

41. Некоторые апопротеины интергальные и не могут быть отделены от липо протеина, а другие могут свободно переноситься от одного типа липопротеина к другому. Апопротеины выполняют несколько функций:1. формируют структуру липопротеинов,2. служат ферментами или активаторами ферментов, действующих на липопротеинов. Каждый из типов ЛП образуются в разных тканях и траспортируют определённые липиды. Например, ХМ транпортируют экзогенные из кишечников ткани, поэтому триацил глицеролы составляют до 85% массы этих частиц. ЛП хорошо растворимы в крови. Некоторые ЛП проходят через стенки капилляров кровеносных сосудов и доставляют липиды клеткам. Состав ЛП крови значительно изменяеться в течение суток. В организме синтезируются сведущие типы протеинов: хиломикроны, ЛПОНП, ЛППП, ЛПНП, ЛПВП.

 

42.Жировая ткань: 2 типа:бурая и белая. Бурая(шея, верхняя часть груди, между лопатками, подмышечная впадина). Еекл. –большое кол-во митохондрий. Всся энергия образ. При окис. Субстрата. Выдел в виде теплоты. Белая(повсеместно) ф-ии: защита внутр. Органов от механ. Поврежд. Энергия в виде триглицеридов и продукции веществ. Обладают регуляторным действием.

 

43. Избыточное накопление жира в адипоцитах широко распространено. Ожирение – важнейший фактор риска развития инфаркта миокарда, инсульта, сахарного диабета, артериальной гипертензии и желчекаменной болезни. Ожирением считают состояние, когда масса тела превышает 20% от «идеальной» для данного индивидуума. Образование адипоцитов происходит еще во внутриутробном состоянии. После этого жировые клетки могут увеличиваться в размерах при ожирениях или уменьшаться при похудании, но их количество не изменяется в течение жизни. Первичное ожирение характеризуется множеством гормональных и метаболических особенностей у лиц, страдающих этим заболеванием. Первичное ожирение развивается при избыточной калорийности питания по сравнению с расходами энергии. Первичное ожирение – это результат действия многих факторов, т.е. ожирение – полигенное заболевание. Вторичное ожирение – это ожирение развивающееся в результате какого-либо основного заболевания, чаще всего эндокринного. Атеросклероз – это образование склеротических бляшек на стенках сосудов, в таких местах часто образуются тромбы. Атеросклеротические бляшки, представляют собой в основном отложением холестерола. Атеросклероз полегенное заболевание. Одна из основных причин является нарушение баланса между поступлением холестерола с пищей, его синтезом и выведением из организма.

 

47,111 Процесс гниения в кишечнике: микрофлора кишечника обладает рядом ферментов, которые катализируют (окисление, восстановление, дезаминирование, декарбоксилирование, распад) аминокислоты. Создаются оптимальные условия для образования ядовитых продуктов распада (фенол, крезол, сероводород) и нетоксических продуктов,аминокислоты, кетокислоты. Все эти превращения белков-гниение. После всасывания через воротную вену в печень, там обезвреживается путем химического связывания с серной и глюкуроновой кислотой с образованием нетоксичных,парных кислот.

 

48. Трансаминирование – это реакция, заключающаяся в том, что аминокислота и кетокислота обмениваются друг с другом своими функциональными группами при α-углеродном атоме. В результате аминокислота превращается в α-кетокислоту, а кетокислота становиться аминокислотой. Эту реакцию катализируют ферменты трансаминазы. Коферментом всех трансаминаз яв-ся активная форма витамина В6. Главная особенность реакций трансаминирования: 1. это циклический процесс, все стадии которого катализируются одним и тем же ферментом – трансаминазой, данной пары кислот. В этот цикл вступает одна аминокислота и кетокислота. Образуется другая α-кетокислота и аминокислота; 2. все стадии этого процесса обратимы; 3. каждая трансоминаза специфична для одной пары субстратов и соответствующей ей пары продуктов, и все стадии реакции катализируются только одним ферментом. Этот фермент – аланинаминотрансфераза (АлТ). Трансаминирование обеспечивает синтез новых аминокислот из числа заменимых, обеспечивает протекание реакций косвенного дезаменирования, обеспечивает синтез мочевины.

 

49. Дезаминирование аминокислот. У человек происходит в основном путём окислительного дезоминирования. Эти реакции протекают с помощью двух ферментов: 1.оксидаза Д-аминокислот;2. оксидаза L-аминоксилот.эти ферменты обладают групповой стереоспецифичностью. Кроме оксидаз имеется ещё один фермент, катализирующий окислительное дезаминирование глетаминовой кислоты – глутомат – дегидрогеназа(глетомат ДГ). Этот фермерт являеться НАД-зевисимым и обладает высокой активностью. В отличии от аксидаз аминокислот, которые медленно превращают аминокислоты в физиологических условиях. Биологическое условие реакция дезоминирования: 1. реакции дезоминирования необратимы, как и реакции декарбоксилирования – дезоминирования тоже может играть роль первого этапа на путях распада амино кислот; 2. один из непосредственных продуктов дезоминирования – конечный продукт метаболизма аммиак; 3. другой продукт реакции дезоминирования – альфа –кетокислота. Большинство альфа-кетокислот тем или иным путём превращаеться в кислоты, которые являються промежуточными метаболитами ЦТК: в альфа гкето глуторовую, в янтарную, фумаровую, щавелевоуксусную. Все эти метоболиты могут в организме трансформироваться в углеводы, перед этим превращаясь в ПВК.

49. Аммиак.образование в тканях, токсичность, транспорт в крови, пути обезвреживания. Аммиак образ. В тканях в процессе катоболизма Аминокислот в результате их дезаминирования часть аммиака образ. В кишеч.(гниение белков) аммиак токсичное соединен. Прежде всего для ЦНС повышение его вызыв. Судороги, тремор, нечленораздельная речь тошнота, рвота, кома.токсичность: угнетение обмена АК. И синтеза из них нейромедиатора. гипоксия тканей накоплениеСО2 и гипоэнергитические состояния стимуляция синтеза глутамина и как следствие повышение осмотич. Давления в кл. нейроглии, набухание астроцитов и отек мозга. Нарушение трансмембранного переноса NA и K и влияние на проведение нерв.

импульсов.Обезвреживание: в печени амми. Обезвр. В результате р-и синтеза глютамина при участии глутамин синтетазы.

 

51. Катехоламины. Биороль,реакция образования и детоксикации. Мозговой слой надпоч. Служ. Местом образ. Катехоламинов-дофамин, тадрен,норадр., они апосредуют ф-ии цнс и снс приним. Участ. В регул. Ссс исходн. Продукт. Явл. Тирозин (р-я гидроксилирования)образ ДОФА он не облад. Биолог. Активностью легко проникает через гематоэнцефалический бапрьер из ДОФА образ. Адрен.(р-я метилирования) изДОФА образ. Дофамин(р-я декарбоксилирования) в гранулах мозг. Вещ. Надпоч. Содерж. 80% адреналина и 20%: норадр. Секр. Катехоламинов осущ. Путем экзоцитоза содерж. Гранул пост. Во внекл. Пространство причина высвобожд. Катехолам.-стресс,физ.,псих.,нагрузка повышение уровня инсулина,гипотония. Роль-влияние на обмен вещ. За счет увелич.т скорости утил. Энергии повыш. Образ. Тепла употреб. Кислорода усиливает липолиз стим. Процессы глюконеогенеза в печени. в мозговом веществе надпочечников нервной ткани тиразин служит предшественником катехоламинов, важнейшим из которых является дофамин, норадреналин и адреналин. По химическому строние катехоламины – 3,4 –дигидроксипроизводные фенил этиламина. Синтез катехол аминов происходит в цитоплазе и гранулах клеток мозгового слоя надпочечников. Секреция гормнов из гранул происходит путём эгзоцитоза. В плазме крови катехол амины образуют непрочный комплекс с альбумином. Катехоламины действуют на клетки – мишени через рецепторы, локализованные в плазматической мембране. Выделяют два главных класса таких рецепторов: альфа –адренергтические и бето-адренергтические. Все рецепторы катехоламинов – гликопротеины, которые являются продуктами разных генов, различаются сродством к агонистам и антагонистам и передают сигналы в клетки с помощью разных вторичных посредников. Биологические эффекты адренолина и норадренолина затрагивают практически все функции организма.

 

52. Декарбоксилирование аминокислот.Биогенные амины: СИНТЕЗ, Ф-Я, ИНАКТИВАЦИЯ. Некоторые амин. Кис. Могут подверг. Декарбоксил.- отщеплению альфа карбоксильной группы. Продуктами реакции явл. СО2 и биогенн. Амин. Которые явл. БОВ. Они выполн. Ф-ю нейромедиаторов(сиротонин, дофомин, ГАМК) гормонов9(норадрен.,адрен.) регуляторн. Факторов нервного действия(гистамин, карнозин, спермин). Для осущ. Биолог. Ф-ии в нервн. Кл. требуется опр. Концентр. Биогенных аминов. Избыточное накопление их может вызвать патологию. Инактивируются 2мя путями: 1-метилирование под действием метилтрансфераз., 2-окислением ферментами моноаминоаксидазам.

 

53. Аминок-ты как источники медиаторов и гормонов, врожденные нарушения. Фенилкетонурия: когда путь превращения фенилаланина в фениллактат становится главным(при нарушении: тирозин из фенил-аланингидроксилазы).повыш. в крови фенилпирувата,фенилацетата,фениллактата, фенилацетилглутамина. Классическая ФКУ: наследственная(мутации в гене) снижение активности фермента. Нарушение умственного и физич. Развития, судорожный синдром,нарушение пигментации, токсическ. Действие на кл. мозга. Вариантная ФКУ: следствие мутаций в генах. Проявления теже. Лечение: диета с очень низким содерж. Фенилаланина. Диагностика: опред. В моче и крови. Диагностика мутантного гена- метод ДНК-диагностики(рестрикционного анализа и ПЦР). Алкаптонурия:дефект диоксигеназы гомогентизиновой к-ты. Выделение с мочей бол. Кол-ва к-ты, к-я окисляясь кислородом воздуха образует темные пигменты алкаптоны.также пигментация соед. Ткани(охроноз)и артрит. Заболевание наследуется по аутосомно-рецессивному признаку.диагностики нет. Альбинизм: врожденный деффект тирозиназы.наруш. синтез пигмента меланина. Отсутствие пигментации кожи,снижена острота зрения,светобоязнь, нервно-психические заболевания.

 

54. Нуклеиновые кислоты. В орг-зме присутствуют 2 вида нукл. Кислот(ДНК и РНК) к-рые состоят из нуклеотидов. Нуклеотиды состоят из азотистого основания, моносахарида и остатка фосф. к-ты. Репликация- удвоение ДНК. Каждая цепь родительской 2х цепочечной ДНК служит матрицей для синтеза новой комплиментарной цепи. Транскрипция: 1я стадия- репликация днк. В ходе пр-са обр-ся мол-ла М-РНК служащая матрицей д\ синтеза белков а так-же т- РНК и р- РНК. В основе транскрипции лежит принцип комплиментарности. Трансляция:

 

55. Переваривание нуклеиновых кислот в ЖКТ. Нуклеопротеины в желудке отщепл. Белковый компонент и денатурир. Под действием HCl.Далее полинуклеатидная часть этих молекул гидролизируется в кишечнике до мононуклеатидов. В расщепл. Н.к. учавств. ДНК-азы и РНК-азы панкреатического сока которые гидрализируют макромолекулы до олигонуклиотидов которые расчепляются до смеси 3- и 5-мононуклеатидов. Фосфатный остатокнуклеотидов гидролитически отщеп-ся и превращ. В нуклеозиды которые всасываются кл. тонкого киш. Или расщеп-ся нуклеозидфосфорелазами кишечника с образ. Рибозо- или дезоксирибоза-1-фосфата, пуриновых и пиримидин. Оснований.

 

56. Синтез и распад пуриновых и пиримидиновых оснований. Подагра. В результате превращ. Нуклеотидов. В тканях постоянно образ. Свободные пурин. Основания-аденин и гуанин. Они повторно использ. Для синтеза нуклеатидов при участии ферментов. распад пуриновых нуклиатидов вкл. Р-ии гидролитического отщепления фосфатного остатка, рибозного остатка и аминогруппы. Ядро пуриновых нуклеатидов превращается в печени в мочевую кис.-основной продукт катоболизма пуриновых нуклеот. В орг. Человека. Ядро пирим. Нуклеатидов образ. Из СО2, амидной гр. Глутамина, аспоргиновой кислоты. Врезультате реакций образ. Уредиловая кислота- предшественник пиримид. Нуклеотидов. Подагра- развивается в результате хронич. Повышения конц. Мочевой кислоты. Кристаллы соли мочевой кис. Отклад. В суставе.

 

Белки плазмы крови

Плазма крови состоит на 90-92% из воды, а 8-10% приходится на сухой остаток.

Общее количество белка составляет 7-8%, остальное приходится на долю других органических соединений и минеральных солей. Белки плазмы крови/65-85 г/л/:

а) альбумины - 4,5% синтез-ся в печени,прод-сть жизни 19 сут.норма 37-55г\л 1.Поддерживают онкотическое давление2.Источнтк аминокислот/питательная функция/3.Обеспечивает коллоидное состояние крови4.Адсорбция и транспорт экзо и эндогенных веществ/участие в защитной, питательной и экскреторной функции/ Альб.повышен присост-х с гипогидратацией(рвота,ожоги,диарея) б) глобулин - 2-3% альфа-глобулины в их состав входят: альфа-липопротеид-тр-рт липидов и жирораств.витаминов;протромбин –фактор свёртывания;тиреоид –связ-т глобулин, тр-рт гормонов щитовидн.ж-зы;альфа 1-антитрипсин-нейтр-т протелитич.ферменнты(трипсин,плазмин),лейкоцитарные протеазы(освоб-е при лизисе лейкоц.);кислый альфа 1-гликопротеин:тр-рт прогестерона и тестостерона альфа2-глобулины:альфа2-макроглоб.:нейтр-т протеолитич.ферм-ты,тр-ет ф-ты и гормоны; эритропоэтин:эритропоэз;гаптоглобин:связ-т своб.Нв(при лизисе эритроц.) и тр-ет в РЭС;

Бета-глобулины - в основном представлены: Трансферин- тр-рт Fe2+ и Fe3+(1 мол-ла-2иона), В-липопротеиды(ЛПНП)-тр-рт липид,гармонов и жирораств.вит-в. липопротеидами Гамма-глобулины - это иммуноглобулины/антитела/ сост-т из тяжелых и легих цепей:Jg G,A,M,D,E.

в) фибриноген - 0,2-0,4%

 

63. Низкомолекул-е вещ-ва плазмы крови:

азотсодержащие:1 аминокислоты- продукты распада белков. 2 мочевина, синтез печени(при отс-ии повышенного содерж-я в крови и тканях аммиака и аминокислот, цинкл Кребса-Гензелейта. 3Мочевая к-та –основные прод-ты катабализма пуриновых нуклеотидов.
В сыворотке крови 0.15-0.4 м\моль на литр ежесут-о из орган-а вывод-я 0.4-0.6 гр. При повыш-и концентрауии – подагра(отложение мочевых камней в хрящах и подкожной клетчатке)

 

64. Лейкоциты - самый малочисленный отряд среди форменных элементов крови. Их количество не превышает в норме 4-9 тыс./мм3. Основная функция, которую они выполняют в организме - защитная. С помощью лейкоцитов обеспечивается мощный тканевой и кровяной барьеры против микробной, вирусной и паразитарной инфекции. Морфологической особенностью лейкоцитов, отличающей их от других форменных элементов крови, является наличие ядра, различного по размерам и степени дифференцировки у разных видов.

В зависимости от наличия или отсутствия специфической зернистости в цитоплазме, лейкоциты делятся на 2 группы: гранулоциты и агранулоциты.

Гранулоциты в свою очередь подразделяются на виды в зависимости от чувствительности гранул к кислым либо основным красителям:а) базофилы б) эозинофилы в) нейтрофилы.

В зависимости от зрелости последние подразделяются на:а) метамиелоциты, или юные нейтрофилы, б) палочкоядерные

в) сегментоядерные (по степени дифференцировки ядра).

Агранулоциты: а) лимфоциты б) моноциты Время жизни большинства лейкоцитов невелико: от нескольких часов до нескольких суток. Исключение составляют клетки иммунной памяти, которые могут сохраняться в организме без митоза до 10 и более лет (этим определяется продолжительность специфического иммунитета). Все зрелые лейкоциты в организме могут находиться в следующих состояниях:

1. Лейкоциты циркулирующей крови.

2. Секвестрированные лейкоциты (находятся в кровеносном русле, но не переносятся с кровотоком; располагаются у стенки сосудов или в закрытых сосудах - переходная форма).

3. Тканевые (за пределами сосудистого русла), основное состояние лейкоцитов

 

65. Эритроциты - красные кровяные тельца. Имеют форму двояковогнутого диска.

Функции эритроцитов: 1. Дыхательная - транспорт кислорода и участие в транспорте углекислого газа.2. Адсорбция и транспорт питательных веществ.3. Адсорбция и транспорт токсинов.4. Регуляция ионного состава плазмы крови.5. Формирует реологические характеристики крови/вязкость и т.д./ Эритрон - часть системы крови, обеспечивающая поддержание постоянства количества эритроцитов. В эритрон входят:а) эритороидный ряд красного косного мозга

б) ретикулоциты и эритроциты в) органы разрушения эритроцитовг) продукты распадаэритроцитовд)Эритропоэтины/вырабатываются почками, печенью, а также продукты распада эритроцитов/ Эритрокинетика - это процессы, направленные на образование и разрушение эритроцитов. Продолжительность жизни эритроцитов - 120 дней.Регуляция эритрокинетики осуществляется преимущественно гуморальным путем. Стимуляторы образования и созревания эритроцитов (эритропоэза) - эритропоэтины (специфический стимулятор), глюкокортикоиды. Противоположным действием на эритропоэз влияют женские половые гормоны - эстрогены. Количество эритроцитов: у мужчин 4,5-5,0 млн. в 1 мм3, 4,5-5,0*1012/л; у женщин 4,0-4,5 млн. в 1 мм3,4,0-4,5*1012/л. Эритроцитоз - увеличение содержания эритроцитов. Эритропения –снижение содержания эритроцитов, это состояние может еще обозначатся термином "анемия". Возможны истинные и ложные изменения количества эритроцитов. Истинные - изменения во всем организме. Ложные - изменения за счет изменения объема плазмы крови.

Размеры эритроцитов: 6-8 микрон - нормоцит; менее 6 микрон - микроцит; 8-10 микрон - макроцит; более 10 микрон - мегалоцит. Тромбоциты Как лейкоциты выполняют в основном защитную функцию, так тромбоци­ты прежде всего участвуют в свертывании крови. Тромбоциты - "кровяные пластинки", безъядерные клетки крови, имеют двояковыпуклую форму.

Размер - 0,5 - 4 мкм (самые мелкие клетки крови).В норме в 1 мм3 крови - 200.000 - 400.000 штук тромбоцитов.

­ - тромбоцитоз. ¯ - тромбоцитопения,

М.б. и при нормальном содержании тромбоцитов в крови наблюдаться патология со стороны функций тромбоцитов - при тромбоцитопатиях.

Продолжительность жизни - 8-12 дней.

Образуются в красном костном мозге из мегакариоцитов (тромбоцитопоэз). Функции тромбоцитов: 1. Ангиотрофическая - ежедневно поглощается 35.000 тромбоцитов из 1 мм3 крови за сутки (» 15 % всех циркулирующих тромбоцитов).

После глубокой тромбоцитопении через 30 минут 85-90% всех тромбоци­тов оказывается в эндотелии. Т.о. сам эндотелий не может поглощать вещества из плазмы (тромбоциты смыкаются с эндотелием и изливают в них свое содержимое).Исходя из этого, при тромбоцитопениях наблюдается дистрофия эндоте­лия (пропускает эритроциты (диапедез), петехии (синяки, точечные кровоизлияния).2. Участие в регенерации сосудистой стенки (стимулируют размножение эндотелиальных и гладкомышечных клеток, синтез волокон коллагена).3. Способность поддерживать спазм поврежденных сосудов (высвобождают серотонин, катехоламины, тромбомодулин, тромбоксан).4. Участие тромбоцитарных факторов в процессах свертывания крови и фибринолиза. 5. Адгезивно-агрегационная функция (образование первичной тромбоци­тарной пробки).1. Адгезия (прилипание активированых тромбоцитов к чужеродной поверхности). Наиболее важные стимуляторы адгезии - волокна коллагена ("+" заряженные группировки), а также кофактор адгезии - ф. Виллебранда.

2. Агрегация - слияние тромбоцитов в однородную массу, формирование гомогенного тромбоцитарного тромба за счет переплетения псевдоподий.

3. Реакция высвобождения (дегрануляция индукторов агрегации и веществ, поддерживающих спазм сосудов (АДФ, сератонин, тромбин, адреналин, тромбо­ксан А2 (мощный стимулятор агрегации и ангиоспазма)), а также тромбоцитар­ных факторов свертывания (их 16, обозначаются арабскими цифрами).

4. Ретракция сгустка - (т.к. тромбоцит в псевдоподиях содержит белки, подобные актину и миозину. При взаимодействии с Са+2 - происходит сокраще­ние, в результате чего сгусток уменьшается в объеме, уплотняется. При этом ближе стягиваются и поврежденные ткани, что способствует скорейшей регенерации тканей).

 

66.Гемостаз- система останавливающ. Кровотечение и сохран. Жидкое сост. Крови. Факторы:1.Фибриноген-синтезируется в печени содерж. В плазме крови. Из него образ. Фибрин. В его нитя запут. Ферментативные элем. Крови, образ. Тромб. 2.Тканевой-образ. При поврежд. Ткани запускает внешний путь сверт. Крови. 3. Протрамбин- из него образ. Трамбин. Он вызывает наслаивание тромбоцитов. Участ. В пролиферации клеток и их репорации. 4. Фактор7-соедиинение внешнего и внутр. Пути сверт. Крови.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 779 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2267 - | 2040 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.