Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Окисление пальмитиновой кослоты




Процесс окисления жирной кислоты в митохондриях клетки включает несколько последовательных энзиматических реакций.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты. Таким образом, первой реакцией в каждом цикле распада ацил-КоА является его окисление ацил-КоА-де-гидрогеназой, приводящее к образованию еноил-КоА с двойной связью между С-2 и С-3:

Существует несколько ФАД-содержащих ацил-КоА-дегидрогеназ, каждая из которых обладает специфичностью по отношению к ацил-КоА с определенной длиной углеродной цепи.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Заметим, что гидратация еноил-КоА стереоспецифична, подобно гидратации фумарата и аконитата. В результате гидратации транс-Δ2-двойной связи образуется только L-изомер 3-гидроксиацил-КоА.

Вторая стадия дегидрирования. Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакцию катализируют НАД+-зависимые дегидрогеназы:

Тиолазная реакция. В ходе предыдущих реакций происходило окисление метиленовой группы при С-3 в оксогруппу. Тиолазная реакцияпредставляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА (рис. 11.2). Например, при окислении пальмитиновой кислоты (С16) повторяется 7 циклов β-окисления. Запомним, что приокислении жирной кислоты, содержащей п углеродных атомов, происходит n/2–1 цикл β-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование 2молекул ацетил-КоА) и всего получится п/2 молекул ацетил-КоА. Следовательно, суммарное уравнение β-окисления активированной кислоты можно записать так:

Пальмитоил-КоА + 7ФАД + 7НАД+ + 7Н2O + 7HS-KoA –>

–> 8Ацетил-КоА + 7ФАДН2 + 7НАДН + 7Н+.

Баланс энергии. При каждом цикле β-окисления образуются одна молекула ФАДН2 и одна молекула НАДН. Последние в процессе окисления вдыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ.

Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полномокислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ. Изменение свободной энергии ΔF при полном сгорании 1 моля пальмитиновой кислоты составляет 2338 ккал, а богатая энергией фосфатная связь АТФ характеризуется величиной 7,6 ккал/моль. Нетрудно подсчитать, что примерно 990 ккал (7,6 х 130), или 42% от всей потенциальной энергии пальмитиновой кислотыпри ее окислении в организме, используется для ресинтеза АТФ, а оставшаяся часть, очевидно, теряется в виде тепла.

Следовательно, эффективность накопления энергии в результате окисления жирных кислот при стандартных условиях составляет ~ 40%, что близко к соответствующей величине для гликолиза, цикла трикарбоновых кислот и окислительного фосфорилирования.

 

Биосинтез мочевины.

Мочевина является главным конечным продуктом обмена аминокислот. Синтезируется мочевина из аммиака, который постоянно образуется в организме при окислительном и неокислительном дезаминировании аминокислот, при гидролизе амидов глутаминовой и аспарагиновой кислот, а также при распаде пуриновых и пиримидиновых нуклеотидов. Часть аммиака образуется в кишечнике в результате действия бактерий на пищевые белки (гниение белков в кишечнике) и поступает в кровь воротной вены. Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего - на центральную нервную систему. Несмотря на то, что аммиак постоянно продуцируется в тканях, он содержится в периферической крови лишь в следовых количествах, так как быстро удаляется из кровеносной системы печенью, где входит в состав глутамата, глутамина и мочевины. Биосинтез мочевины является основным механизмом обезвреживания аммиака в организме. Синтез мочевины происходит в печени в цикле Кребса-Гензелейта (другое название - орнитиновый цикл мочевинообразования Кребса) в несколько этапов с участием ряда ферментных систем. Синтез сопровождается поглощением энергии, источником которой является АТФ.

Весь цикл мочевинообразования можно представить следующим образом:

На первом этапе синтезируется карбамоилфосфат в результате конденсации ионов аммония, двуокиси углерода и фосфата (поступающего из АТФ) под действием фермента карбамоилсинтетазы. Карбамоилфосфат - это метаболически активная форма аммиака, используемая в качестве исходного продукта для синтеза ряда других азотистых соединений.

На втором этапе мочевинообразования происходит конденсация карбамоилфосфата и орнитина с образованием цитруллина; реакцию катализирует орнитинкарбамоилтрансфераза.

На следующей стадии цитруллин превращается в аргинин в результате двух последовательно протекающих реакций. Первая из них, энергозависимая, сводится к конденсации цитруллина и аспарагиновой кислоты с образованием аргининосукцината (эту реакцию катализирует аргининосукцинатсинтетаза). Аргининосукцинат распадается в следующей реакции на аргинин и фумарат при участии другого фермента - аргининосукцинатлиазы.

На последнем этапе аргинин расщепляется на мочевину и орнитин под действием аргиназы.

Эффективность работы орнитинового цикла при нормальном питании человека и умеренных физических нагрузках составляет примерно 60% его мощности. Запас мощности необходим для избежания гипераммониемии при изменении количества белка в пище. Увеличение скорости синтеза мочевины происходит при длительной физической работе или длительном голодании, которое сопровождается распадом тканевых белков. Некоторые патологические состояния, характеризующиеся интенсивным распадом белков тканей (сахарный диабет и др.) также сопровождаются активацией орнитинового цикла.

Нормальный ход метаболического превращения аммиака в мочевину имеет большое значение для организма. При серьезных нарушениях функции печени - например, при обширном циррозе или тяжелом гепатите - аммиак, являясь токсичным веществом, накапливается в крови, вызывая тяжелые клинические симптомы. Известны врожденные метаболические нарушения, связанные с недостатком одного из ферментов, участвующих в синтезе мочевины. Все нарушения синтеза мочевины вызывают аммиачное отравление.

Синтезированная в печени мочевина попадает в кровь, затем в почки и в итоге выводится с мочой. Мочевина является беспороговым веществом: все образующееся количество фильтруется в просвет проксимальных канальцев, а затем часть (около 35 %) реабсорбируется обратно за счет реабсорбции воды. В связи с этим величина экскреции мочевины является менее информативным показателем клубочковой фильтрации, чем показатель, основывающийся на экскреции креатинина (который, в отличие от мочевины, практически не реабсорбируется).

Рис. 12.5. Орнитиновый цикл синтеза мочевины в печени.

Аммиак образуется главным образом в процессе глутаматде-гидрогеназной реакции. В процессе пополнения запасов аспартата участвуют три сопряженные реакции: сначала фумарат под действием фумаразы присоединяет воду и превращается в малат, который окисляется при участии малатдегидрогеназы с образованием оксалоацетата; последний в реакции трансаминирования с глутаматом вновь образует аспартат.

Учитывая известные фактические данные о механизмах обезвреживания аммиака в организме, можно сделать следующее заключение. Часть аммиака используется на биосинтез аминокислот путем восстановительного аминирования α-кетокислот по механизму реакции трансаминирования. Аммиак связывается при биосинтезе глутамина и аспарагина. Некоторое количество аммиака выводится с мочой в виде аммонийных солей. В форме креатинина, который образуется из креатина и креатинфосфата, выделяется из организма значительная часть азота аминокислот.

 

Билет №16

Витамин А.

Каротиноиды объединяют группу производных растительных пигментов каротинов. Наибольшее значение имеет ретинол (А1) и дегидроретинол (А2). Среди биологически активных соединений важнейшими считаются α-, β- и γ-каротины. Наибольшую ценность для организма представляет β-каротин, который содержит 2 β-ионовых кольца, соединенных цепью, состоящей из 18 атомов углерода (из 4 частиц изопрена). Этот каротин широко распространен в природе.

Молекула витамина А содержит только одно β-ионовое кольцо, а боковая цепь состоит из 2 частей изопрена. Молекула витамина А представляет собой половину молекулы β-каротина, который является провитамином витамина А. Провитамином обычно называют непосредственный предшественник, из которого образуется витамин. Поскольку в молекуле витамина А есть гидроксильная группа, он является высокомолекулярным циклическим одноатомным ненасыщенным первичным спиртом. Превращение β-каротина в витамин А происходит преимущественно в стенке тонкой кишки, а также в печени. В этих органах есть и специфический фермент, катализирующий гидролитический распад β-каротина на 2 молекулы А-альдегида-15-15׳-каротин-диоксигеназа. В 1937 году из печени пресноводных рыб был выделен витамин, из которого в цикле на 2 атома водорода меньше, чем у витамина А1. Его назвали витамином А2, дегидроретинолом. А1 и А2 обладают одинаковым биологическим действием и физико-химическими свойствами, только витамин А2 менее активен. Оба витамина получены в чистом виде и синтезированы.

Они хорошо растворяются в жирах и жировых растворителях, достаточно устойчивы к действию щелочей. Витамин А термостабилен, может выдерживать стерилизацию без доступа кислорода. На воздухе он быстро окисляется и разрушается, особенно в кислой среде. Этому способствует также солнечное освещение.. Биологически активными формами витамина А в организме человека и животных могут быть витамин А-спирт, витамин А-альдегид, витамин А-кислота, а также эфиры витамина А. В кишки витамин А попадает в виде эфира, все другие формы образуются уже в тканях. Каждая из этих структур играет определенную роль в обмене веществ, формировании структуры и функциях клеток. Например, витамин А-спирт (в виде эфиров с жирными кислотами) является основным резервом витамина А в тканях, витамин А-альдегид нужен для образования зрительных пигментов, а витамин А-кислота – для нормального роста животных и некоторых других процессов.

Одной из важных функций витамина А является его участие в образовании сложного белка родопсина (зрительного пурпура) сетчатки глаза. Родопсин, имеющийся в палочках, и являющийся фоточувствительным пигментом, состоит из белка опсина и альдегидной формы витамина А – ретиналя. Ретиналь образуется отщеплением 2 атомов водорода от первичной спиртовой группы витамина; он может находиться в цис- и транс-формах. Под действием света цис-ретиналь переходит в транс-ретиналь, после чего родопсин распадается на белок опсин и ретиналь. В темноте эти части снова соединяются, благодаря чему создается возможность видеть в сумерках и ночью. При отщеплении ретинола от родопсина часть его разрушается, поэтому для ресинтеза молекулы родопсина нужны новые молекулы витамина А. Если их нет, то образование ретинола, а в связи с этим и родопсина, затормаживается. В результате этого человек теряет способность видеть в сумерках, т.е. развивается «куриная слепота». Витамин необходим для синтеза нуклеиновых кислот и белков, в частности, белков сыворотки крови, для нормального обмена липидов (в митохондриях печени при А-гиповитаминозе обнаружено уменьшение содержания общих липидов и фосфолипидов, непредельных жирных кислот (арахидоновой и линоленовой) при одновременном увеличении содержания холестерина и триглицеридов). Витамин А влияет на активность ферментов тканевого дыхания и на процессы окислительного фосфорилирования, а также на обмен минеральных веществ, в частности, солей кальция. Каротины в иммунной системе повышают защитную силу собственных интерферонов организма против возбудителей болезней. Прежде всего они защищают от свободных радикалов вилочковую железу, которая представляет собой штаб-квартиру иммунной системы.

Витамин А обнаружен только в организме человека и животных. В растениях содержатся его провитамины – каротины. Всасывание витамина А в кишках происходит при участии желчных кислот. Все факторы, нарушающие переваривание и всасывание жиров, задерживают всасывание каротина и витамина А. Витамин А переносится кровью в комплексе с белком-переносчиком, т.н. ретинол-связывающим протеином (РСП). При недостатке белка в диете снижается депонирование витамина А в печени и образование его из β-каротина. Основным депо витамина А является печень, где он откладывается в виде белково-витаминных комплексов. В печени же основная масса β-каротина превращается в витамин А. Важнейшие источники витамина А: печень, сливочное масло, сливки, сыр, яичный желток, рыбий жир.

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 5605 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2446 - | 2243 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.